Analysis of 3D interaction of a blast wave with a finite wall

The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock waves 2022-04, Vol.32 (3), p.273-282
Hauptverfasser: Gautier, A., Sochet, I., Lapebie, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 282
container_issue 3
container_start_page 273
container_title Shock waves
container_volume 32
creator Gautier, A.
Sochet, I.
Lapebie, E.
description The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.
doi_str_mv 10.1007/s00193-022-01081-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03704900v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666537383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMTEYnu3EdgeGqnwUqRILzNZLYlNXISl22qr_Hpcg2Jisd3XulXwIuWRwwwDUbQRgE0GBcwoMNKPqiIxYLjjlrBDHZAQToSnjWp2SsxhXCVdSqRG5m7bY7KOPWecycZ_5trcBq9537SHBrGww9tkOtzbb-X6ZEudb36cLm-acnDhsor34ecfk7fHhdTani5en59l0QSuuRU-VQm4tYl4qVeUaHZZM1prJsqp1mUsxKWzhAConLZdO18zyvCyLOteykuDEmFwPu0tszDr4Dwx706E38-nCHDIQCvIJwJYl9mpg16H73NjYm1W3CemX0XApZSGU0CJRfKCq0MUYrPudZWAOSs2g1CSl5lupUakkhlJMcPtuw9_0P60vXMB3Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666537383</pqid></control><display><type>article</type><title>Analysis of 3D interaction of a blast wave with a finite wall</title><source>Springer Nature - Complete Springer Journals</source><creator>Gautier, A. ; Sochet, I. ; Lapebie, E.</creator><creatorcontrib>Gautier, A. ; Sochet, I. ; Lapebie, E.</creatorcontrib><description>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-022-01081-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Barriers ; Condensed Matter Physics ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed cameras ; Low rise buildings ; Original Article ; Overpressure ; Porous materials ; Pressure sensors ; Reactive fluid environment ; Shock wave propagation ; Thermodynamics ; Wave diffraction</subject><ispartof>Shock waves, 2022-04, Vol.32 (3), p.273-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</citedby><cites>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</cites><orcidid>0000-0002-2571-198X ; 0000-0001-7575-7444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-022-01081-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-022-01081-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03704900$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautier, A.</creatorcontrib><creatorcontrib>Sochet, I.</creatorcontrib><creatorcontrib>Lapebie, E.</creatorcontrib><title>Analysis of 3D interaction of a blast wave with a finite wall</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</description><subject>Acoustics</subject><subject>Barriers</subject><subject>Condensed Matter Physics</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed cameras</subject><subject>Low rise buildings</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Porous materials</subject><subject>Pressure sensors</subject><subject>Reactive fluid environment</subject><subject>Shock wave propagation</subject><subject>Thermodynamics</subject><subject>Wave diffraction</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMTEYnu3EdgeGqnwUqRILzNZLYlNXISl22qr_Hpcg2Jisd3XulXwIuWRwwwDUbQRgE0GBcwoMNKPqiIxYLjjlrBDHZAQToSnjWp2SsxhXCVdSqRG5m7bY7KOPWecycZ_5trcBq9537SHBrGww9tkOtzbb-X6ZEudb36cLm-acnDhsor34ecfk7fHhdTani5en59l0QSuuRU-VQm4tYl4qVeUaHZZM1prJsqp1mUsxKWzhAConLZdO18zyvCyLOteykuDEmFwPu0tszDr4Dwx706E38-nCHDIQCvIJwJYl9mpg16H73NjYm1W3CemX0XApZSGU0CJRfKCq0MUYrPudZWAOSs2g1CSl5lupUakkhlJMcPtuw9_0P60vXMB3Kg</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Gautier, A.</creator><creator>Sochet, I.</creator><creator>Lapebie, E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2571-198X</orcidid><orcidid>https://orcid.org/0000-0001-7575-7444</orcidid></search><sort><creationdate>202204</creationdate><title>Analysis of 3D interaction of a blast wave with a finite wall</title><author>Gautier, A. ; Sochet, I. ; Lapebie, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Barriers</topic><topic>Condensed Matter Physics</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed cameras</topic><topic>Low rise buildings</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Porous materials</topic><topic>Pressure sensors</topic><topic>Reactive fluid environment</topic><topic>Shock wave propagation</topic><topic>Thermodynamics</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautier, A.</creatorcontrib><creatorcontrib>Sochet, I.</creatorcontrib><creatorcontrib>Lapebie, E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautier, A.</au><au>Sochet, I.</au><au>Lapebie, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of 3D interaction of a blast wave with a finite wall</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2022-04</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>273</spage><epage>282</epage><pages>273-282</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-022-01081-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2571-198X</orcidid><orcidid>https://orcid.org/0000-0001-7575-7444</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0938-1287
ispartof Shock waves, 2022-04, Vol.32 (3), p.273-282
issn 0938-1287
1432-2153
language eng
recordid cdi_hal_primary_oai_HAL_hal_03704900v1
source Springer Nature - Complete Springer Journals
subjects Acoustics
Barriers
Condensed Matter Physics
Detonation
Engineering
Engineering Fluid Dynamics
Engineering Sciences
Engineering Thermodynamics
Fluid- and Aerodynamics
Heat and Mass Transfer
High speed cameras
Low rise buildings
Original Article
Overpressure
Porous materials
Pressure sensors
Reactive fluid environment
Shock wave propagation
Thermodynamics
Wave diffraction
title Analysis of 3D interaction of a blast wave with a finite wall
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%203D%20interaction%20of%20a%20blast%20wave%20with%20a%20finite%20wall&rft.jtitle=Shock%20waves&rft.au=Gautier,%20A.&rft.date=2022-04&rft.volume=32&rft.issue=3&rft.spage=273&rft.epage=282&rft.pages=273-282&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-022-01081-7&rft_dat=%3Cproquest_hal_p%3E2666537383%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666537383&rft_id=info:pmid/&rfr_iscdi=true