Analysis of 3D interaction of a blast wave with a finite wall
The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseu...
Gespeichert in:
Veröffentlicht in: | Shock waves 2022-04, Vol.32 (3), p.273-282 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 282 |
---|---|
container_issue | 3 |
container_start_page | 273 |
container_title | Shock waves |
container_volume | 32 |
creator | Gautier, A. Sochet, I. Lapebie, E. |
description | The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests. |
doi_str_mv | 10.1007/s00193-022-01081-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03704900v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2666537383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</originalsourceid><addsrcrecordid>eNp9kD1PwzAURS0EEqXwB5giMTEYnu3EdgeGqnwUqRILzNZLYlNXISl22qr_Hpcg2Jisd3XulXwIuWRwwwDUbQRgE0GBcwoMNKPqiIxYLjjlrBDHZAQToSnjWp2SsxhXCVdSqRG5m7bY7KOPWecycZ_5trcBq9537SHBrGww9tkOtzbb-X6ZEudb36cLm-acnDhsor34ecfk7fHhdTani5en59l0QSuuRU-VQm4tYl4qVeUaHZZM1prJsqp1mUsxKWzhAConLZdO18zyvCyLOteykuDEmFwPu0tszDr4Dwx706E38-nCHDIQCvIJwJYl9mpg16H73NjYm1W3CemX0XApZSGU0CJRfKCq0MUYrPudZWAOSs2g1CSl5lupUakkhlJMcPtuw9_0P60vXMB3Kg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666537383</pqid></control><display><type>article</type><title>Analysis of 3D interaction of a blast wave with a finite wall</title><source>Springer Nature - Complete Springer Journals</source><creator>Gautier, A. ; Sochet, I. ; Lapebie, E.</creator><creatorcontrib>Gautier, A. ; Sochet, I. ; Lapebie, E.</creatorcontrib><description>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</description><identifier>ISSN: 0938-1287</identifier><identifier>EISSN: 1432-2153</identifier><identifier>DOI: 10.1007/s00193-022-01081-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Acoustics ; Barriers ; Condensed Matter Physics ; Detonation ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Engineering Thermodynamics ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed cameras ; Low rise buildings ; Original Article ; Overpressure ; Porous materials ; Pressure sensors ; Reactive fluid environment ; Shock wave propagation ; Thermodynamics ; Wave diffraction</subject><ispartof>Shock waves, 2022-04, Vol.32 (3), p.273-282</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</citedby><cites>FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</cites><orcidid>0000-0002-2571-198X ; 0000-0001-7575-7444</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00193-022-01081-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00193-022-01081-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03704900$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gautier, A.</creatorcontrib><creatorcontrib>Sochet, I.</creatorcontrib><creatorcontrib>Lapebie, E.</creatorcontrib><title>Analysis of 3D interaction of a blast wave with a finite wall</title><title>Shock waves</title><addtitle>Shock Waves</addtitle><description>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</description><subject>Acoustics</subject><subject>Barriers</subject><subject>Condensed Matter Physics</subject><subject>Detonation</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Engineering Thermodynamics</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed cameras</subject><subject>Low rise buildings</subject><subject>Original Article</subject><subject>Overpressure</subject><subject>Porous materials</subject><subject>Pressure sensors</subject><subject>Reactive fluid environment</subject><subject>Shock wave propagation</subject><subject>Thermodynamics</subject><subject>Wave diffraction</subject><issn>0938-1287</issn><issn>1432-2153</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAURS0EEqXwB5giMTEYnu3EdgeGqnwUqRILzNZLYlNXISl22qr_Hpcg2Jisd3XulXwIuWRwwwDUbQRgE0GBcwoMNKPqiIxYLjjlrBDHZAQToSnjWp2SsxhXCVdSqRG5m7bY7KOPWecycZ_5trcBq9537SHBrGww9tkOtzbb-X6ZEudb36cLm-acnDhsor34ecfk7fHhdTani5en59l0QSuuRU-VQm4tYl4qVeUaHZZM1prJsqp1mUsxKWzhAConLZdO18zyvCyLOteykuDEmFwPu0tszDr4Dwx706E38-nCHDIQCvIJwJYl9mpg16H73NjYm1W3CemX0XApZSGU0CJRfKCq0MUYrPudZWAOSs2g1CSl5lupUakkhlJMcPtuw9_0P60vXMB3Kg</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Gautier, A.</creator><creator>Sochet, I.</creator><creator>Lapebie, E.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2571-198X</orcidid><orcidid>https://orcid.org/0000-0001-7575-7444</orcidid></search><sort><creationdate>202204</creationdate><title>Analysis of 3D interaction of a blast wave with a finite wall</title><author>Gautier, A. ; Sochet, I. ; Lapebie, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-77a2eeaa4b77c48afab16d816bcd8b46395e5f00cf6e26f8d1e24bb5d486c60f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustics</topic><topic>Barriers</topic><topic>Condensed Matter Physics</topic><topic>Detonation</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Engineering Thermodynamics</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed cameras</topic><topic>Low rise buildings</topic><topic>Original Article</topic><topic>Overpressure</topic><topic>Porous materials</topic><topic>Pressure sensors</topic><topic>Reactive fluid environment</topic><topic>Shock wave propagation</topic><topic>Thermodynamics</topic><topic>Wave diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gautier, A.</creatorcontrib><creatorcontrib>Sochet, I.</creatorcontrib><creatorcontrib>Lapebie, E.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Shock waves</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gautier, A.</au><au>Sochet, I.</au><au>Lapebie, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of 3D interaction of a blast wave with a finite wall</atitle><jtitle>Shock waves</jtitle><stitle>Shock Waves</stitle><date>2022-04</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>273</spage><epage>282</epage><pages>273-282</pages><issn>0938-1287</issn><eissn>1432-2153</eissn><abstract>The aim of this study is to characterize the interaction of a shock wave with an obstacle. The effect of the length of the obstacle on the shock wave propagation and maximum overpressure is investigated. Several previous studies investigated the use of obstacles such as porous materials, grids, pseudo-perforated walls, triangular wedges, or multi-obstacles as a way to mitigate blast intensity. Here, the focus is on the interaction of an incident shock wave on a single-plate obstacle. This obstacle can be seen as a wall or a low-rise building. The paper presents a small-scale experimental study. The blast wave is created by the detonation of a hemispherical gaseous charge. It is characterized by pressure sensors and a high-speed camera. The pressure sensors record the overpressure and arrival time. The propagation, reflection, and diffraction of the shock wave are analyzed from the pictures produced during the visualization tests.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00193-022-01081-7</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-2571-198X</orcidid><orcidid>https://orcid.org/0000-0001-7575-7444</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0938-1287 |
ispartof | Shock waves, 2022-04, Vol.32 (3), p.273-282 |
issn | 0938-1287 1432-2153 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03704900v1 |
source | Springer Nature - Complete Springer Journals |
subjects | Acoustics Barriers Condensed Matter Physics Detonation Engineering Engineering Fluid Dynamics Engineering Sciences Engineering Thermodynamics Fluid- and Aerodynamics Heat and Mass Transfer High speed cameras Low rise buildings Original Article Overpressure Porous materials Pressure sensors Reactive fluid environment Shock wave propagation Thermodynamics Wave diffraction |
title | Analysis of 3D interaction of a blast wave with a finite wall |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%203D%20interaction%20of%20a%20blast%20wave%20with%20a%20finite%20wall&rft.jtitle=Shock%20waves&rft.au=Gautier,%20A.&rft.date=2022-04&rft.volume=32&rft.issue=3&rft.spage=273&rft.epage=282&rft.pages=273-282&rft.issn=0938-1287&rft.eissn=1432-2153&rft_id=info:doi/10.1007/s00193-022-01081-7&rft_dat=%3Cproquest_hal_p%3E2666537383%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2666537383&rft_id=info:pmid/&rfr_iscdi=true |