Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex

The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular microbiology 2022-07, Vol.118 (1-2), p.16-29
Hauptverfasser: Hogrel, Gaëlle, Marino‐Puertas, Laura, Laurent, Sébastien, Ibrahim, Ziad, Covès, Jacques, Girard, Eric, Gabel, Frank, Fenel, Daphna, Daugeron, Marie‐Claire, Clouet‐d'Orval, Béatrice, Basta, Tamara, Flament, Didier, Franzetti, Bruno
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1-2
container_start_page 16
container_title Molecular microbiology
container_volume 118
creator Hogrel, Gaëlle
Marino‐Puertas, Laura
Laurent, Sébastien
Ibrahim, Ziad
Covès, Jacques
Girard, Eric
Gabel, Frank
Fenel, Daphna
Daugeron, Marie‐Claire
Clouet‐d'Orval, Béatrice
Basta, Tamara
Flament, Didier
Franzetti, Bruno
description The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q9UZY3 (UniProt ID), conserved in Thermococcales. The protein was identified in native pull‐down experiments using the proteasome regulatory complex (proteasome‐activating nucleotidase [PAN]) as bait. X‐ray crystallography and small‐angle X‐ray scattering experiments revealed that the protein is monomeric and adopts a β‐barrel core structure with an oligonucleotide/oligosaccharide‐binding (OB)‐fold, typically found in translation elongation factors. Mobility shift experiment showed that Q9UZY3 displays transfer ribonucleic acid (tRNA)‐binding properties. Pull‐downs, co‐immunoprecipitation and isothermal titration calorimetry (ITC) studies revealed that Q9UZY3 interacts in vitro with PAN. Native pull‐downs and proteomic analysis using different versions of Q9UZY3 showed that the protein interacts with the assembled PAN–20S proteasome machinery in Pyrococcus abyssi (Pa) cellular extracts. The protein was therefore named Pbp11, for Proteasome‐Binding Protein of 11 kDa. Interestingly, the interaction network of Pbp11 also includes ribosomal proteins, tRNA‐processing enzymes and exosome subunits dependent on Pbp11's N‐terminal domain that was found to be essential for tRNA binding. Together these data suggest that Pbp11 participates in an interface between the proteasome and the translational machinery. Partner of the archaeal proteasome PAN:20S complex in Thermococcales, Pbp11 directly interacts with the unfoldase PAN. From the cellular extract, Pbp11 pulls down the proteasome system and other macromolecular assemblies related to RNA processes. These last interactions are dependent on the presence of the flexible N‐terminal tail of Pbp11, a key feature of Pbp11 to bind transfer ribonucleic acids. Pbp11 becomes an interesting candidate to study tight connections between these nanomachines in the context of extremophilic Archaea.
doi_str_mv 10.1111/mmi.14948
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03701716v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2670061309</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3828-97b30f6e18b8c7f05b994d4139c25432acdbcb0a6db3d13d9e362424974197d23</originalsourceid><addsrcrecordid>eNp1kctO3TAQhq0KVA7QRV-gstRNWQR8SZx4eXRULtKBShWVurMmjtMYOfGpncNtxSPwjDwJhlCQKjEbS6Nv_vnHP0KfKdmnqQ763u7TXObVBzSjXBQZk0W1gWZEFiTjFfu9hbZjvCCEciL4R7TFC0ELSaoZahcdBNCjCfYWRusH7FsMOPbgHB5_ns0f7u5rOzR2-INXwY_GDnjsYMR2SDNpMOIrO3apZzAE3YEBN4EQfW-w9v3KmetdtNmCi-bTy7uDfh1-P18cZ8sfRyeL-TLTyWaVybLmpBWGVnWly5YUtZR5k1MuNStyzkA3ta4JiKbmDeWNNFywnOWyzKksG8Z30N6k24FTq2B7CDfKg1XH86V66hFeElpScUkT-21ik92_axNH1duojXMwGL-OiomSEJG-TCb063_ohV-HIV2SqKoUrEiSb8t18DEG0746oEQ9BaVSUOo5qMR-eVFc171pXsl_ySTgYAKurDM37yup09OTSfIRRkqcng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687625716</pqid></control><display><type>article</type><title>Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex</title><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><creator>Hogrel, Gaëlle ; Marino‐Puertas, Laura ; Laurent, Sébastien ; Ibrahim, Ziad ; Covès, Jacques ; Girard, Eric ; Gabel, Frank ; Fenel, Daphna ; Daugeron, Marie‐Claire ; Clouet‐d'Orval, Béatrice ; Basta, Tamara ; Flament, Didier ; Franzetti, Bruno</creator><creatorcontrib>Hogrel, Gaëlle ; Marino‐Puertas, Laura ; Laurent, Sébastien ; Ibrahim, Ziad ; Covès, Jacques ; Girard, Eric ; Gabel, Frank ; Fenel, Daphna ; Daugeron, Marie‐Claire ; Clouet‐d'Orval, Béatrice ; Basta, Tamara ; Flament, Didier ; Franzetti, Bruno</creatorcontrib><description>The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q9UZY3 (UniProt ID), conserved in Thermococcales. The protein was identified in native pull‐down experiments using the proteasome regulatory complex (proteasome‐activating nucleotidase [PAN]) as bait. X‐ray crystallography and small‐angle X‐ray scattering experiments revealed that the protein is monomeric and adopts a β‐barrel core structure with an oligonucleotide/oligosaccharide‐binding (OB)‐fold, typically found in translation elongation factors. Mobility shift experiment showed that Q9UZY3 displays transfer ribonucleic acid (tRNA)‐binding properties. Pull‐downs, co‐immunoprecipitation and isothermal titration calorimetry (ITC) studies revealed that Q9UZY3 interacts in vitro with PAN. Native pull‐downs and proteomic analysis using different versions of Q9UZY3 showed that the protein interacts with the assembled PAN–20S proteasome machinery in Pyrococcus abyssi (Pa) cellular extracts. The protein was therefore named Pbp11, for Proteasome‐Binding Protein of 11 kDa. Interestingly, the interaction network of Pbp11 also includes ribosomal proteins, tRNA‐processing enzymes and exosome subunits dependent on Pbp11's N‐terminal domain that was found to be essential for tRNA binding. Together these data suggest that Pbp11 participates in an interface between the proteasome and the translational machinery. Partner of the archaeal proteasome PAN:20S complex in Thermococcales, Pbp11 directly interacts with the unfoldase PAN. From the cellular extract, Pbp11 pulls down the proteasome system and other macromolecular assemblies related to RNA processes. These last interactions are dependent on the presence of the flexible N‐terminal tail of Pbp11, a key feature of Pbp11 to bind transfer ribonucleic acids. Pbp11 becomes an interesting candidate to study tight connections between these nanomachines in the context of extremophilic Archaea.</description><identifier>ISSN: 0950-382X</identifier><identifier>EISSN: 1365-2958</identifier><identifier>DOI: 10.1111/mmi.14948</identifier><identifier>PMID: 35615908</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>Archaea ; Baits ; Biochemistry, Molecular Biology ; Calorimetry ; Crystallography ; Electrophoretic mobility ; Elongation ; Immunoprecipitation ; Life Sciences ; Nucleotidase ; OB‐fold ; Oligonucleotides ; Oligosaccharides ; Peptides ; proteasome ; Proteasomes ; Proteins ; protein–protein interaction ; Proteomics ; Ribonucleic acid ; Ribosomal proteins ; ribosome‐associated quality control ; RNA ; Structural Biology ; Titration ; Titration calorimetry ; Transfer RNA ; Translation ; Translation elongation ; tRNA ; tRNA binding</subject><ispartof>Molecular microbiology, 2022-07, Vol.118 (1-2), p.16-29</ispartof><rights>2022 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>This article is protected by copyright. All rights reserved.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3828-97b30f6e18b8c7f05b994d4139c25432acdbcb0a6db3d13d9e362424974197d23</cites><orcidid>0000-0001-5323-0510 ; 0000-0001-8462-0693 ; 0000-0002-3591-8538</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fmmi.14948$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fmmi.14948$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35615908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.univ-grenoble-alpes.fr/hal-03701716$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hogrel, Gaëlle</creatorcontrib><creatorcontrib>Marino‐Puertas, Laura</creatorcontrib><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Ibrahim, Ziad</creatorcontrib><creatorcontrib>Covès, Jacques</creatorcontrib><creatorcontrib>Girard, Eric</creatorcontrib><creatorcontrib>Gabel, Frank</creatorcontrib><creatorcontrib>Fenel, Daphna</creatorcontrib><creatorcontrib>Daugeron, Marie‐Claire</creatorcontrib><creatorcontrib>Clouet‐d'Orval, Béatrice</creatorcontrib><creatorcontrib>Basta, Tamara</creatorcontrib><creatorcontrib>Flament, Didier</creatorcontrib><creatorcontrib>Franzetti, Bruno</creatorcontrib><title>Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex</title><title>Molecular microbiology</title><addtitle>Mol Microbiol</addtitle><description>The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q9UZY3 (UniProt ID), conserved in Thermococcales. The protein was identified in native pull‐down experiments using the proteasome regulatory complex (proteasome‐activating nucleotidase [PAN]) as bait. X‐ray crystallography and small‐angle X‐ray scattering experiments revealed that the protein is monomeric and adopts a β‐barrel core structure with an oligonucleotide/oligosaccharide‐binding (OB)‐fold, typically found in translation elongation factors. Mobility shift experiment showed that Q9UZY3 displays transfer ribonucleic acid (tRNA)‐binding properties. Pull‐downs, co‐immunoprecipitation and isothermal titration calorimetry (ITC) studies revealed that Q9UZY3 interacts in vitro with PAN. Native pull‐downs and proteomic analysis using different versions of Q9UZY3 showed that the protein interacts with the assembled PAN–20S proteasome machinery in Pyrococcus abyssi (Pa) cellular extracts. The protein was therefore named Pbp11, for Proteasome‐Binding Protein of 11 kDa. Interestingly, the interaction network of Pbp11 also includes ribosomal proteins, tRNA‐processing enzymes and exosome subunits dependent on Pbp11's N‐terminal domain that was found to be essential for tRNA binding. Together these data suggest that Pbp11 participates in an interface between the proteasome and the translational machinery. Partner of the archaeal proteasome PAN:20S complex in Thermococcales, Pbp11 directly interacts with the unfoldase PAN. From the cellular extract, Pbp11 pulls down the proteasome system and other macromolecular assemblies related to RNA processes. These last interactions are dependent on the presence of the flexible N‐terminal tail of Pbp11, a key feature of Pbp11 to bind transfer ribonucleic acids. Pbp11 becomes an interesting candidate to study tight connections between these nanomachines in the context of extremophilic Archaea.</description><subject>Archaea</subject><subject>Baits</subject><subject>Biochemistry, Molecular Biology</subject><subject>Calorimetry</subject><subject>Crystallography</subject><subject>Electrophoretic mobility</subject><subject>Elongation</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Nucleotidase</subject><subject>OB‐fold</subject><subject>Oligonucleotides</subject><subject>Oligosaccharides</subject><subject>Peptides</subject><subject>proteasome</subject><subject>Proteasomes</subject><subject>Proteins</subject><subject>protein–protein interaction</subject><subject>Proteomics</subject><subject>Ribonucleic acid</subject><subject>Ribosomal proteins</subject><subject>ribosome‐associated quality control</subject><subject>RNA</subject><subject>Structural Biology</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Transfer RNA</subject><subject>Translation</subject><subject>Translation elongation</subject><subject>tRNA</subject><subject>tRNA binding</subject><issn>0950-382X</issn><issn>1365-2958</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kctO3TAQhq0KVA7QRV-gstRNWQR8SZx4eXRULtKBShWVurMmjtMYOfGpncNtxSPwjDwJhlCQKjEbS6Nv_vnHP0KfKdmnqQ763u7TXObVBzSjXBQZk0W1gWZEFiTjFfu9hbZjvCCEciL4R7TFC0ELSaoZahcdBNCjCfYWRusH7FsMOPbgHB5_ns0f7u5rOzR2-INXwY_GDnjsYMR2SDNpMOIrO3apZzAE3YEBN4EQfW-w9v3KmetdtNmCi-bTy7uDfh1-P18cZ8sfRyeL-TLTyWaVybLmpBWGVnWly5YUtZR5k1MuNStyzkA3ta4JiKbmDeWNNFywnOWyzKksG8Z30N6k24FTq2B7CDfKg1XH86V66hFeElpScUkT-21ik92_axNH1duojXMwGL-OiomSEJG-TCb063_ohV-HIV2SqKoUrEiSb8t18DEG0746oEQ9BaVSUOo5qMR-eVFc171pXsl_ySTgYAKurDM37yup09OTSfIRRkqcng</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Hogrel, Gaëlle</creator><creator>Marino‐Puertas, Laura</creator><creator>Laurent, Sébastien</creator><creator>Ibrahim, Ziad</creator><creator>Covès, Jacques</creator><creator>Girard, Eric</creator><creator>Gabel, Frank</creator><creator>Fenel, Daphna</creator><creator>Daugeron, Marie‐Claire</creator><creator>Clouet‐d'Orval, Béatrice</creator><creator>Basta, Tamara</creator><creator>Flament, Didier</creator><creator>Franzetti, Bruno</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5323-0510</orcidid><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid><orcidid>https://orcid.org/0000-0002-3591-8538</orcidid></search><sort><creationdate>202207</creationdate><title>Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex</title><author>Hogrel, Gaëlle ; Marino‐Puertas, Laura ; Laurent, Sébastien ; Ibrahim, Ziad ; Covès, Jacques ; Girard, Eric ; Gabel, Frank ; Fenel, Daphna ; Daugeron, Marie‐Claire ; Clouet‐d'Orval, Béatrice ; Basta, Tamara ; Flament, Didier ; Franzetti, Bruno</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3828-97b30f6e18b8c7f05b994d4139c25432acdbcb0a6db3d13d9e362424974197d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Archaea</topic><topic>Baits</topic><topic>Biochemistry, Molecular Biology</topic><topic>Calorimetry</topic><topic>Crystallography</topic><topic>Electrophoretic mobility</topic><topic>Elongation</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Nucleotidase</topic><topic>OB‐fold</topic><topic>Oligonucleotides</topic><topic>Oligosaccharides</topic><topic>Peptides</topic><topic>proteasome</topic><topic>Proteasomes</topic><topic>Proteins</topic><topic>protein–protein interaction</topic><topic>Proteomics</topic><topic>Ribonucleic acid</topic><topic>Ribosomal proteins</topic><topic>ribosome‐associated quality control</topic><topic>RNA</topic><topic>Structural Biology</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Transfer RNA</topic><topic>Translation</topic><topic>Translation elongation</topic><topic>tRNA</topic><topic>tRNA binding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hogrel, Gaëlle</creatorcontrib><creatorcontrib>Marino‐Puertas, Laura</creatorcontrib><creatorcontrib>Laurent, Sébastien</creatorcontrib><creatorcontrib>Ibrahim, Ziad</creatorcontrib><creatorcontrib>Covès, Jacques</creatorcontrib><creatorcontrib>Girard, Eric</creatorcontrib><creatorcontrib>Gabel, Frank</creatorcontrib><creatorcontrib>Fenel, Daphna</creatorcontrib><creatorcontrib>Daugeron, Marie‐Claire</creatorcontrib><creatorcontrib>Clouet‐d'Orval, Béatrice</creatorcontrib><creatorcontrib>Basta, Tamara</creatorcontrib><creatorcontrib>Flament, Didier</creatorcontrib><creatorcontrib>Franzetti, Bruno</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Molecular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hogrel, Gaëlle</au><au>Marino‐Puertas, Laura</au><au>Laurent, Sébastien</au><au>Ibrahim, Ziad</au><au>Covès, Jacques</au><au>Girard, Eric</au><au>Gabel, Frank</au><au>Fenel, Daphna</au><au>Daugeron, Marie‐Claire</au><au>Clouet‐d'Orval, Béatrice</au><au>Basta, Tamara</au><au>Flament, Didier</au><au>Franzetti, Bruno</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex</atitle><jtitle>Molecular microbiology</jtitle><addtitle>Mol Microbiol</addtitle><date>2022-07</date><risdate>2022</risdate><volume>118</volume><issue>1-2</issue><spage>16</spage><epage>29</epage><pages>16-29</pages><issn>0950-382X</issn><eissn>1365-2958</eissn><abstract>The proteasome system allows the elimination of functional or structurally impaired proteins. This includes the degradation of nascent peptides. In Archaea, how the proteasome complex interacts with the translational machinery remains to be described. Here, we characterized a small orphan protein, Q9UZY3 (UniProt ID), conserved in Thermococcales. The protein was identified in native pull‐down experiments using the proteasome regulatory complex (proteasome‐activating nucleotidase [PAN]) as bait. X‐ray crystallography and small‐angle X‐ray scattering experiments revealed that the protein is monomeric and adopts a β‐barrel core structure with an oligonucleotide/oligosaccharide‐binding (OB)‐fold, typically found in translation elongation factors. Mobility shift experiment showed that Q9UZY3 displays transfer ribonucleic acid (tRNA)‐binding properties. Pull‐downs, co‐immunoprecipitation and isothermal titration calorimetry (ITC) studies revealed that Q9UZY3 interacts in vitro with PAN. Native pull‐downs and proteomic analysis using different versions of Q9UZY3 showed that the protein interacts with the assembled PAN–20S proteasome machinery in Pyrococcus abyssi (Pa) cellular extracts. The protein was therefore named Pbp11, for Proteasome‐Binding Protein of 11 kDa. Interestingly, the interaction network of Pbp11 also includes ribosomal proteins, tRNA‐processing enzymes and exosome subunits dependent on Pbp11's N‐terminal domain that was found to be essential for tRNA binding. Together these data suggest that Pbp11 participates in an interface between the proteasome and the translational machinery. Partner of the archaeal proteasome PAN:20S complex in Thermococcales, Pbp11 directly interacts with the unfoldase PAN. From the cellular extract, Pbp11 pulls down the proteasome system and other macromolecular assemblies related to RNA processes. These last interactions are dependent on the presence of the flexible N‐terminal tail of Pbp11, a key feature of Pbp11 to bind transfer ribonucleic acids. Pbp11 becomes an interesting candidate to study tight connections between these nanomachines in the context of extremophilic Archaea.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>35615908</pmid><doi>10.1111/mmi.14948</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5323-0510</orcidid><orcidid>https://orcid.org/0000-0001-8462-0693</orcidid><orcidid>https://orcid.org/0000-0002-3591-8538</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0950-382X
ispartof Molecular microbiology, 2022-07, Vol.118 (1-2), p.16-29
issn 0950-382X
1365-2958
language eng
recordid cdi_hal_primary_oai_HAL_hal_03701716v1
source Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection)
subjects Archaea
Baits
Biochemistry, Molecular Biology
Calorimetry
Crystallography
Electrophoretic mobility
Elongation
Immunoprecipitation
Life Sciences
Nucleotidase
OB‐fold
Oligonucleotides
Oligosaccharides
Peptides
proteasome
Proteasomes
Proteins
protein–protein interaction
Proteomics
Ribonucleic acid
Ribosomal proteins
ribosome‐associated quality control
RNA
Structural Biology
Titration
Titration calorimetry
Transfer RNA
Translation
Translation elongation
tRNA
tRNA binding
title Characterization of a small tRNA‐binding protein that interacts with the archaeal proteasome complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T00%3A43%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20a%20small%20tRNA%E2%80%90binding%20protein%20that%20interacts%20with%20the%20archaeal%20proteasome%20complex&rft.jtitle=Molecular%20microbiology&rft.au=Hogrel,%20Ga%C3%ABlle&rft.date=2022-07&rft.volume=118&rft.issue=1-2&rft.spage=16&rft.epage=29&rft.pages=16-29&rft.issn=0950-382X&rft.eissn=1365-2958&rft_id=info:doi/10.1111/mmi.14948&rft_dat=%3Cproquest_hal_p%3E2670061309%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687625716&rft_id=info:pmid/35615908&rfr_iscdi=true