Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer
The revolution of 4D printing allows combining smart materials to additive processes to create behavioral objects able to respond to external stimuli, such as temperature, light, electrical, or magnetic fields. Here, a modified commercial digital light processing (DLP) 3D printer is used to obtain c...
Gespeichert in:
Veröffentlicht in: | Advanced materials technologies 2022-11, Vol.7 (11), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Advanced materials technologies |
container_volume | 7 |
creator | Lantean, Simone Roppolo, Ignazio Sangermano, Marco Hayoun, Marc Dammak, Hichem Barrera, Gabriele Tiberto, Paola Pirri, Candido Fabrizio Bodelot, Laurence Rizza, Giancarlo |
description | The revolution of 4D printing allows combining smart materials to additive processes to create behavioral objects able to respond to external stimuli, such as temperature, light, electrical, or magnetic fields. Here, a modified commercial digital light processing (DLP) 3D printer is used to obtain complex macroscopic remotely controlled gear‐based devices. The fabrication process is based on the printing of magnetoresponsive polymers containing in situ self‐assembled microstructures, i.e., composed of oriented chains of Fe3O4 nanoparticles (NPs). First, it is demonstrated that magnetoresponsive hammer‐like actuators with different stiffness can be printed allowing both pure rotation or/and bending motions. Then, the microstructure to create a magnetoresponsive gear is exploited. In particular, this work shows that they can be successfully used to transfer torque to other gears, thereby converting a rotation movement into linear translation. Finally, it is demonstrated that magnetoresponsive gears can also be combined with other nonmagnetic elements to create complex assemblies, such as gear‐trains, linear actuators, and grippers that can be remotely controlled.
Digital light processing (DLP) 3D printing was optimized to obtain polymeric nanocomposites with programmable and controlled magnetic anisotropy. This process allow to obtain magnetoresponsive objects which were exploited to fabricate gear‐based devices which undergo programmed movements or actuators with different stiffness, allowing both pure rotation and/or banding motions, by remote application of a magnetic field. |
doi_str_mv | 10.1002/admt.202200288 |
format | Article |
fullrecord | <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03700994v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>ADMT202200288</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3638-a0f9072025e857d56dc133b04b19f28906a110ec7dc254e61833db97986dfd633</originalsourceid><addsrcrecordid>eNqFkD1PwzAQhiMEEhV0ZfbKkHKOmw-PJQWK1AokWonNcpJLY5TElR1SlV-Po6LCxnRf73O6ez3vhsKEAgR3smi6SQBB4IokOfNGAYtCPwb-fv4nv_TG1n4AAOU0Ykkw8nYruW2x0wbtTrdW9Ujm2KscLdmrriKvRm-NbBqZ1UjusZK90oZsrGq3RJL003a6UV9YkFQ3DZpcyZq8dWhQ1w4f2F2lcsLmbpNq3eDauyhlbXH8E6-8zePDOl34y5en53S29HPmLvMllBxi91CISRgXYVTklLEMphnlZZBwiCSlgHlc5EE4xYgmjBUZj3kSFWURMXbl3R73VrIWO6MaaQ5CSyUWs6UYesBiAM6nPXXayVGbG22twfIEUBCDvWKwV5zsdQA_AntV4-EftZjNV-tf9hv_r3-N</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer</title><source>Wiley Online Library All Journals</source><creator>Lantean, Simone ; Roppolo, Ignazio ; Sangermano, Marco ; Hayoun, Marc ; Dammak, Hichem ; Barrera, Gabriele ; Tiberto, Paola ; Pirri, Candido Fabrizio ; Bodelot, Laurence ; Rizza, Giancarlo</creator><creatorcontrib>Lantean, Simone ; Roppolo, Ignazio ; Sangermano, Marco ; Hayoun, Marc ; Dammak, Hichem ; Barrera, Gabriele ; Tiberto, Paola ; Pirri, Candido Fabrizio ; Bodelot, Laurence ; Rizza, Giancarlo</creatorcontrib><description>The revolution of 4D printing allows combining smart materials to additive processes to create behavioral objects able to respond to external stimuli, such as temperature, light, electrical, or magnetic fields. Here, a modified commercial digital light processing (DLP) 3D printer is used to obtain complex macroscopic remotely controlled gear‐based devices. The fabrication process is based on the printing of magnetoresponsive polymers containing in situ self‐assembled microstructures, i.e., composed of oriented chains of Fe3O4 nanoparticles (NPs). First, it is demonstrated that magnetoresponsive hammer‐like actuators with different stiffness can be printed allowing both pure rotation or/and bending motions. Then, the microstructure to create a magnetoresponsive gear is exploited. In particular, this work shows that they can be successfully used to transfer torque to other gears, thereby converting a rotation movement into linear translation. Finally, it is demonstrated that magnetoresponsive gears can also be combined with other nonmagnetic elements to create complex assemblies, such as gear‐trains, linear actuators, and grippers that can be remotely controlled.
Digital light processing (DLP) 3D printing was optimized to obtain polymeric nanocomposites with programmable and controlled magnetic anisotropy. This process allow to obtain magnetoresponsive objects which were exploited to fabricate gear‐based devices which undergo programmed movements or actuators with different stiffness, allowing both pure rotation and/or banding motions, by remote application of a magnetic field.</description><identifier>ISSN: 2365-709X</identifier><identifier>EISSN: 2365-709X</identifier><identifier>DOI: 10.1002/admt.202200288</identifier><language>eng</language><publisher>Wiley</publisher><subject>4D printing ; Chemical Sciences ; Condensed Matter ; Engineering Sciences ; magnetic actuation ; magnetic devices ; Material chemistry ; Micro and nanotechnologies ; Microelectronics ; Physics ; programmed microstructures</subject><ispartof>Advanced materials technologies, 2022-11, Vol.7 (11), p.n/a</ispartof><rights>2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3638-a0f9072025e857d56dc133b04b19f28906a110ec7dc254e61833db97986dfd633</citedby><cites>FETCH-LOGICAL-c3638-a0f9072025e857d56dc133b04b19f28906a110ec7dc254e61833db97986dfd633</cites><orcidid>0000-0001-7602-4015 ; 0000-0002-5744-4206</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadmt.202200288$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadmt.202200288$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03700994$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lantean, Simone</creatorcontrib><creatorcontrib>Roppolo, Ignazio</creatorcontrib><creatorcontrib>Sangermano, Marco</creatorcontrib><creatorcontrib>Hayoun, Marc</creatorcontrib><creatorcontrib>Dammak, Hichem</creatorcontrib><creatorcontrib>Barrera, Gabriele</creatorcontrib><creatorcontrib>Tiberto, Paola</creatorcontrib><creatorcontrib>Pirri, Candido Fabrizio</creatorcontrib><creatorcontrib>Bodelot, Laurence</creatorcontrib><creatorcontrib>Rizza, Giancarlo</creatorcontrib><title>Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer</title><title>Advanced materials technologies</title><description>The revolution of 4D printing allows combining smart materials to additive processes to create behavioral objects able to respond to external stimuli, such as temperature, light, electrical, or magnetic fields. Here, a modified commercial digital light processing (DLP) 3D printer is used to obtain complex macroscopic remotely controlled gear‐based devices. The fabrication process is based on the printing of magnetoresponsive polymers containing in situ self‐assembled microstructures, i.e., composed of oriented chains of Fe3O4 nanoparticles (NPs). First, it is demonstrated that magnetoresponsive hammer‐like actuators with different stiffness can be printed allowing both pure rotation or/and bending motions. Then, the microstructure to create a magnetoresponsive gear is exploited. In particular, this work shows that they can be successfully used to transfer torque to other gears, thereby converting a rotation movement into linear translation. Finally, it is demonstrated that magnetoresponsive gears can also be combined with other nonmagnetic elements to create complex assemblies, such as gear‐trains, linear actuators, and grippers that can be remotely controlled.
Digital light processing (DLP) 3D printing was optimized to obtain polymeric nanocomposites with programmable and controlled magnetic anisotropy. This process allow to obtain magnetoresponsive objects which were exploited to fabricate gear‐based devices which undergo programmed movements or actuators with different stiffness, allowing both pure rotation and/or banding motions, by remote application of a magnetic field.</description><subject>4D printing</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Engineering Sciences</subject><subject>magnetic actuation</subject><subject>magnetic devices</subject><subject>Material chemistry</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Physics</subject><subject>programmed microstructures</subject><issn>2365-709X</issn><issn>2365-709X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkD1PwzAQhiMEEhV0ZfbKkHKOmw-PJQWK1AokWonNcpJLY5TElR1SlV-Po6LCxnRf73O6ez3vhsKEAgR3smi6SQBB4IokOfNGAYtCPwb-fv4nv_TG1n4AAOU0Ykkw8nYruW2x0wbtTrdW9Ujm2KscLdmrriKvRm-NbBqZ1UjusZK90oZsrGq3RJL003a6UV9YkFQ3DZpcyZq8dWhQ1w4f2F2lcsLmbpNq3eDauyhlbXH8E6-8zePDOl34y5en53S29HPmLvMllBxi91CISRgXYVTklLEMphnlZZBwiCSlgHlc5EE4xYgmjBUZj3kSFWURMXbl3R73VrIWO6MaaQ5CSyUWs6UYesBiAM6nPXXayVGbG22twfIEUBCDvWKwV5zsdQA_AntV4-EftZjNV-tf9hv_r3-N</recordid><startdate>202211</startdate><enddate>202211</enddate><creator>Lantean, Simone</creator><creator>Roppolo, Ignazio</creator><creator>Sangermano, Marco</creator><creator>Hayoun, Marc</creator><creator>Dammak, Hichem</creator><creator>Barrera, Gabriele</creator><creator>Tiberto, Paola</creator><creator>Pirri, Candido Fabrizio</creator><creator>Bodelot, Laurence</creator><creator>Rizza, Giancarlo</creator><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7602-4015</orcidid><orcidid>https://orcid.org/0000-0002-5744-4206</orcidid></search><sort><creationdate>202211</creationdate><title>Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer</title><author>Lantean, Simone ; Roppolo, Ignazio ; Sangermano, Marco ; Hayoun, Marc ; Dammak, Hichem ; Barrera, Gabriele ; Tiberto, Paola ; Pirri, Candido Fabrizio ; Bodelot, Laurence ; Rizza, Giancarlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3638-a0f9072025e857d56dc133b04b19f28906a110ec7dc254e61833db97986dfd633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>4D printing</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Engineering Sciences</topic><topic>magnetic actuation</topic><topic>magnetic devices</topic><topic>Material chemistry</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Physics</topic><topic>programmed microstructures</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lantean, Simone</creatorcontrib><creatorcontrib>Roppolo, Ignazio</creatorcontrib><creatorcontrib>Sangermano, Marco</creatorcontrib><creatorcontrib>Hayoun, Marc</creatorcontrib><creatorcontrib>Dammak, Hichem</creatorcontrib><creatorcontrib>Barrera, Gabriele</creatorcontrib><creatorcontrib>Tiberto, Paola</creatorcontrib><creatorcontrib>Pirri, Candido Fabrizio</creatorcontrib><creatorcontrib>Bodelot, Laurence</creatorcontrib><creatorcontrib>Rizza, Giancarlo</creatorcontrib><collection>Wiley-Blackwell Open Access Titles</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advanced materials technologies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lantean, Simone</au><au>Roppolo, Ignazio</au><au>Sangermano, Marco</au><au>Hayoun, Marc</au><au>Dammak, Hichem</au><au>Barrera, Gabriele</au><au>Tiberto, Paola</au><au>Pirri, Candido Fabrizio</au><au>Bodelot, Laurence</au><au>Rizza, Giancarlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer</atitle><jtitle>Advanced materials technologies</jtitle><date>2022-11</date><risdate>2022</risdate><volume>7</volume><issue>11</issue><epage>n/a</epage><issn>2365-709X</issn><eissn>2365-709X</eissn><abstract>The revolution of 4D printing allows combining smart materials to additive processes to create behavioral objects able to respond to external stimuli, such as temperature, light, electrical, or magnetic fields. Here, a modified commercial digital light processing (DLP) 3D printer is used to obtain complex macroscopic remotely controlled gear‐based devices. The fabrication process is based on the printing of magnetoresponsive polymers containing in situ self‐assembled microstructures, i.e., composed of oriented chains of Fe3O4 nanoparticles (NPs). First, it is demonstrated that magnetoresponsive hammer‐like actuators with different stiffness can be printed allowing both pure rotation or/and bending motions. Then, the microstructure to create a magnetoresponsive gear is exploited. In particular, this work shows that they can be successfully used to transfer torque to other gears, thereby converting a rotation movement into linear translation. Finally, it is demonstrated that magnetoresponsive gears can also be combined with other nonmagnetic elements to create complex assemblies, such as gear‐trains, linear actuators, and grippers that can be remotely controlled.
Digital light processing (DLP) 3D printing was optimized to obtain polymeric nanocomposites with programmable and controlled magnetic anisotropy. This process allow to obtain magnetoresponsive objects which were exploited to fabricate gear‐based devices which undergo programmed movements or actuators with different stiffness, allowing both pure rotation and/or banding motions, by remote application of a magnetic field.</abstract><pub>Wiley</pub><doi>10.1002/admt.202200288</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7602-4015</orcidid><orcidid>https://orcid.org/0000-0002-5744-4206</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2365-709X |
ispartof | Advanced materials technologies, 2022-11, Vol.7 (11), p.n/a |
issn | 2365-709X 2365-709X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03700994v1 |
source | Wiley Online Library All Journals |
subjects | 4D printing Chemical Sciences Condensed Matter Engineering Sciences magnetic actuation magnetic devices Material chemistry Micro and nanotechnologies Microelectronics Physics programmed microstructures |
title | Magnetoresponsive Devices with Programmable Behavior Using a Customized Commercial Stereolithographic 3D Printer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A47%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetoresponsive%20Devices%20with%20Programmable%20Behavior%20Using%20a%20Customized%20Commercial%20Stereolithographic%203D%20Printer&rft.jtitle=Advanced%20materials%20technologies&rft.au=Lantean,%20Simone&rft.date=2022-11&rft.volume=7&rft.issue=11&rft.epage=n/a&rft.issn=2365-709X&rft.eissn=2365-709X&rft_id=info:doi/10.1002/admt.202200288&rft_dat=%3Cwiley_hal_p%3EADMT202200288%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |