Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar

•Forced convective heat transfer along extensional faults is numerically assessed.•Simulations are characteristic of petrothermal to transitional system.•Favorable faults dip is when facing the direction of the groundwater flow.•Favorable fault location is near a discharge zone (i.e. a river).•Fault...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geothermics 2022-09, Vol.104, p.102455, Article 102455
Hauptverfasser: Rajaobelison, M., Raymond, J., Malo, M., Dezayes, C., Larmagnat, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 102455
container_title Geothermics
container_volume 104
creator Rajaobelison, M.
Raymond, J.
Malo, M.
Dezayes, C.
Larmagnat, S.
description •Forced convective heat transfer along extensional faults is numerically assessed.•Simulations are characteristic of petrothermal to transitional system.•Favorable faults dip is when facing the direction of the groundwater flow.•Favorable fault location is near a discharge zone (i.e. a river).•Fault characteristics and heat flow influence the depth of reservoir temperature. Understanding the role of faults where forced convective heat transfer is the dominant mechanism giving rise to hot springs is critical in geothermal exploration in extensional environments. This study uses two-dimensional models of coupled fluid flow and heat transfer along cross-sections perpendicular to faults and the regional topography to identify favorable fault conditions for geothermal system development in northern Madagascar. Structural data collected at surface were used to define fault scenarios and simulate the ascension of hot fluids to reproduce hot spring temperatures in the Ambilobe normal fault zone area and the Ambanja graben structure. Fault dips facing topography‐driven groundwater flow was shown to be favorable, and hot spring temperatures could be reproduced when the fault permeability was > 10−14 m2. Faults located in a discharge zone near a river were the most favorable for fluid ascension, regardless of their dip. Constraining the model with a basal heat flow between 90 and 148 mWm−2 at a depth of 10 km allowed the reservoir temperature to reach 150–200 °C at depths of 2 km or shallower along favorable faults.
doi_str_mv 10.1016/j.geothermics.2022.102455
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03694776v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0375650522001055</els_id><sourcerecordid>2692290771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a457t-dc664a4bf340d94a65343636b9565ab1a15d10eb92e3e1903bc14272c37f56b23</originalsourceid><addsrcrecordid>eNqNkU9v1DAQxS0EEkvhOxhx4pDFf2Ibc1utgCIt4tKerYkz2XWUjYvtraj48jgKoB57Gvnp99549Ah5y9mWM64_jNsjxnLCdA4-bwUTouqiVeoZ2fCPxjZSGf2cbJg0qtGKqZfkVc4jY8wowzbk9-3cY8oF5j7MR3pCKLQkmPOAicIUq4a_Cs45xBkmOsBlKvkTvTkh9ZCRxoHW7XR37sIUO6Q1Z3nAPAL997Pqyw-54Dkv-Hfo4QjZQ3pNXgwwZXzzd16R2y-fb_bXzeHH12_73aGBVpnS9F7rFtpukC3rbQtayVZqqTurtIKOA1c9Z9hZgRK5ZbLzvBVGeGkGpTshr8j7NfcEk7tL4QzpwUUI7np3cIvGpLatMfqeV_bdyt6l-POCubgxXlI9PTuhrRCWGbNQdqV8ijknHP7HcuaWXtzoHvXill7c2kv17lcv1pPvAyaXfcDZYx8S-uL6GJ6Q8gerCZya</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2692290771</pqid></control><display><type>article</type><title>Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar</title><source>Access via ScienceDirect (Elsevier)</source><creator>Rajaobelison, M. ; Raymond, J. ; Malo, M. ; Dezayes, C. ; Larmagnat, S.</creator><creatorcontrib>Rajaobelison, M. ; Raymond, J. ; Malo, M. ; Dezayes, C. ; Larmagnat, S.</creatorcontrib><description>•Forced convective heat transfer along extensional faults is numerically assessed.•Simulations are characteristic of petrothermal to transitional system.•Favorable faults dip is when facing the direction of the groundwater flow.•Favorable fault location is near a discharge zone (i.e. a river).•Fault characteristics and heat flow influence the depth of reservoir temperature. Understanding the role of faults where forced convective heat transfer is the dominant mechanism giving rise to hot springs is critical in geothermal exploration in extensional environments. This study uses two-dimensional models of coupled fluid flow and heat transfer along cross-sections perpendicular to faults and the regional topography to identify favorable fault conditions for geothermal system development in northern Madagascar. Structural data collected at surface were used to define fault scenarios and simulate the ascension of hot fluids to reproduce hot spring temperatures in the Ambilobe normal fault zone area and the Ambanja graben structure. Fault dips facing topography‐driven groundwater flow was shown to be favorable, and hot spring temperatures could be reproduced when the fault permeability was &gt; 10−14 m2. Faults located in a discharge zone near a river were the most favorable for fluid ascension, regardless of their dip. Constraining the model with a basal heat flow between 90 and 148 mWm−2 at a depth of 10 km allowed the reservoir temperature to reach 150–200 °C at depths of 2 km or shallower along favorable faults.</description><identifier>ISSN: 0375-6505</identifier><identifier>EISSN: 1879-3576</identifier><identifier>DOI: 10.1016/j.geothermics.2022.102455</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Convective heat transfer ; Earth Sciences ; Energy ; Fault detection ; Fault location ; Faults ; Fluid dynamics ; Fluid flow ; Geothermal ; Geothermal power ; Geothermal resources ; Groundwater ; Groundwater flow ; Heat flow ; Heat transfer ; Heat transmission ; Hot springs ; Madagascar ; Numerical modeling ; Permeability ; Regional development ; Sciences of the Universe ; Topography ; Two dimensional models ; Water flow ; Water springs</subject><ispartof>Geothermics, 2022-09, Vol.104, p.102455, Article 102455</ispartof><rights>2022</rights><rights>Copyright Elsevier Science Ltd. Sep 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a457t-dc664a4bf340d94a65343636b9565ab1a15d10eb92e3e1903bc14272c37f56b23</citedby><cites>FETCH-LOGICAL-a457t-dc664a4bf340d94a65343636b9565ab1a15d10eb92e3e1903bc14272c37f56b23</cites><orcidid>0000-0001-7813-359X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.geothermics.2022.102455$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://brgm.hal.science/hal-03694776$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rajaobelison, M.</creatorcontrib><creatorcontrib>Raymond, J.</creatorcontrib><creatorcontrib>Malo, M.</creatorcontrib><creatorcontrib>Dezayes, C.</creatorcontrib><creatorcontrib>Larmagnat, S.</creatorcontrib><title>Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar</title><title>Geothermics</title><description>•Forced convective heat transfer along extensional faults is numerically assessed.•Simulations are characteristic of petrothermal to transitional system.•Favorable faults dip is when facing the direction of the groundwater flow.•Favorable fault location is near a discharge zone (i.e. a river).•Fault characteristics and heat flow influence the depth of reservoir temperature. Understanding the role of faults where forced convective heat transfer is the dominant mechanism giving rise to hot springs is critical in geothermal exploration in extensional environments. This study uses two-dimensional models of coupled fluid flow and heat transfer along cross-sections perpendicular to faults and the regional topography to identify favorable fault conditions for geothermal system development in northern Madagascar. Structural data collected at surface were used to define fault scenarios and simulate the ascension of hot fluids to reproduce hot spring temperatures in the Ambilobe normal fault zone area and the Ambanja graben structure. Fault dips facing topography‐driven groundwater flow was shown to be favorable, and hot spring temperatures could be reproduced when the fault permeability was &gt; 10−14 m2. Faults located in a discharge zone near a river were the most favorable for fluid ascension, regardless of their dip. Constraining the model with a basal heat flow between 90 and 148 mWm−2 at a depth of 10 km allowed the reservoir temperature to reach 150–200 °C at depths of 2 km or shallower along favorable faults.</description><subject>Convective heat transfer</subject><subject>Earth Sciences</subject><subject>Energy</subject><subject>Fault detection</subject><subject>Fault location</subject><subject>Faults</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Geothermal</subject><subject>Geothermal power</subject><subject>Geothermal resources</subject><subject>Groundwater</subject><subject>Groundwater flow</subject><subject>Heat flow</subject><subject>Heat transfer</subject><subject>Heat transmission</subject><subject>Hot springs</subject><subject>Madagascar</subject><subject>Numerical modeling</subject><subject>Permeability</subject><subject>Regional development</subject><subject>Sciences of the Universe</subject><subject>Topography</subject><subject>Two dimensional models</subject><subject>Water flow</subject><subject>Water springs</subject><issn>0375-6505</issn><issn>1879-3576</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkU9v1DAQxS0EEkvhOxhx4pDFf2Ibc1utgCIt4tKerYkz2XWUjYvtraj48jgKoB57Gvnp99549Ah5y9mWM64_jNsjxnLCdA4-bwUTouqiVeoZ2fCPxjZSGf2cbJg0qtGKqZfkVc4jY8wowzbk9-3cY8oF5j7MR3pCKLQkmPOAicIUq4a_Cs45xBkmOsBlKvkTvTkh9ZCRxoHW7XR37sIUO6Q1Z3nAPAL997Pqyw-54Dkv-Hfo4QjZQ3pNXgwwZXzzd16R2y-fb_bXzeHH12_73aGBVpnS9F7rFtpukC3rbQtayVZqqTurtIKOA1c9Z9hZgRK5ZbLzvBVGeGkGpTshr8j7NfcEk7tL4QzpwUUI7np3cIvGpLatMfqeV_bdyt6l-POCubgxXlI9PTuhrRCWGbNQdqV8ijknHP7HcuaWXtzoHvXill7c2kv17lcv1pPvAyaXfcDZYx8S-uL6GJ6Q8gerCZya</recordid><startdate>202209</startdate><enddate>202209</enddate><creator>Rajaobelison, M.</creator><creator>Raymond, J.</creator><creator>Malo, M.</creator><creator>Dezayes, C.</creator><creator>Larmagnat, S.</creator><general>Elsevier Ltd</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7813-359X</orcidid></search><sort><creationdate>202209</creationdate><title>Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar</title><author>Rajaobelison, M. ; Raymond, J. ; Malo, M. ; Dezayes, C. ; Larmagnat, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a457t-dc664a4bf340d94a65343636b9565ab1a15d10eb92e3e1903bc14272c37f56b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convective heat transfer</topic><topic>Earth Sciences</topic><topic>Energy</topic><topic>Fault detection</topic><topic>Fault location</topic><topic>Faults</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Geothermal</topic><topic>Geothermal power</topic><topic>Geothermal resources</topic><topic>Groundwater</topic><topic>Groundwater flow</topic><topic>Heat flow</topic><topic>Heat transfer</topic><topic>Heat transmission</topic><topic>Hot springs</topic><topic>Madagascar</topic><topic>Numerical modeling</topic><topic>Permeability</topic><topic>Regional development</topic><topic>Sciences of the Universe</topic><topic>Topography</topic><topic>Two dimensional models</topic><topic>Water flow</topic><topic>Water springs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaobelison, M.</creatorcontrib><creatorcontrib>Raymond, J.</creatorcontrib><creatorcontrib>Malo, M.</creatorcontrib><creatorcontrib>Dezayes, C.</creatorcontrib><creatorcontrib>Larmagnat, S.</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geothermics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaobelison, M.</au><au>Raymond, J.</au><au>Malo, M.</au><au>Dezayes, C.</au><au>Larmagnat, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar</atitle><jtitle>Geothermics</jtitle><date>2022-09</date><risdate>2022</risdate><volume>104</volume><spage>102455</spage><pages>102455-</pages><artnum>102455</artnum><issn>0375-6505</issn><eissn>1879-3576</eissn><abstract>•Forced convective heat transfer along extensional faults is numerically assessed.•Simulations are characteristic of petrothermal to transitional system.•Favorable faults dip is when facing the direction of the groundwater flow.•Favorable fault location is near a discharge zone (i.e. a river).•Fault characteristics and heat flow influence the depth of reservoir temperature. Understanding the role of faults where forced convective heat transfer is the dominant mechanism giving rise to hot springs is critical in geothermal exploration in extensional environments. This study uses two-dimensional models of coupled fluid flow and heat transfer along cross-sections perpendicular to faults and the regional topography to identify favorable fault conditions for geothermal system development in northern Madagascar. Structural data collected at surface were used to define fault scenarios and simulate the ascension of hot fluids to reproduce hot spring temperatures in the Ambilobe normal fault zone area and the Ambanja graben structure. Fault dips facing topography‐driven groundwater flow was shown to be favorable, and hot spring temperatures could be reproduced when the fault permeability was &gt; 10−14 m2. Faults located in a discharge zone near a river were the most favorable for fluid ascension, regardless of their dip. Constraining the model with a basal heat flow between 90 and 148 mWm−2 at a depth of 10 km allowed the reservoir temperature to reach 150–200 °C at depths of 2 km or shallower along favorable faults.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.geothermics.2022.102455</doi><orcidid>https://orcid.org/0000-0001-7813-359X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0375-6505
ispartof Geothermics, 2022-09, Vol.104, p.102455, Article 102455
issn 0375-6505
1879-3576
language eng
recordid cdi_hal_primary_oai_HAL_hal_03694776v1
source Access via ScienceDirect (Elsevier)
subjects Convective heat transfer
Earth Sciences
Energy
Fault detection
Fault location
Faults
Fluid dynamics
Fluid flow
Geothermal
Geothermal power
Geothermal resources
Groundwater
Groundwater flow
Heat flow
Heat transfer
Heat transmission
Hot springs
Madagascar
Numerical modeling
Permeability
Regional development
Sciences of the Universe
Topography
Two dimensional models
Water flow
Water springs
title Understanding heat transfer along extensional faults: The case of the Ambilobe and Ambanja geothermal systems of Madagascar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20heat%20transfer%20along%20extensional%20faults:%20The%20case%20of%20the%20Ambilobe%20and%20Ambanja%20geothermal%20systems%20of%20Madagascar&rft.jtitle=Geothermics&rft.au=Rajaobelison,%20M.&rft.date=2022-09&rft.volume=104&rft.spage=102455&rft.pages=102455-&rft.artnum=102455&rft.issn=0375-6505&rft.eissn=1879-3576&rft_id=info:doi/10.1016/j.geothermics.2022.102455&rft_dat=%3Cproquest_hal_p%3E2692290771%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2692290771&rft_id=info:pmid/&rft_els_id=S0375650522001055&rfr_iscdi=true