Volumes of Sublevel Sets of Nonnegative Forms and Complete Monotonicity
Let $\mathcal{C}_{d,n}$ be the convex cone consisting of real $n$-variate degree $d$ forms that are strictly positive on $\mathbb{R}^n\setminus \{\mathbf{0}\}$. We prove that the Lebesgue volume of the sublevel set $\{g\leq 1\}$ of $g\in \mathcal{C}_{d,n}$ is a completely monotone function on $\math...
Gespeichert in:
Veröffentlicht in: | SIAM journal on applied algebra and geometry 2023-01, Vol.7 (4), p.768-785 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let $\mathcal{C}_{d,n}$ be the convex cone consisting of real $n$-variate degree $d$ forms that are strictly positive on $\mathbb{R}^n\setminus \{\mathbf{0}\}$. We prove that the Lebesgue volume of the sublevel set $\{g\leq 1\}$ of $g\in \mathcal{C}_{d,n}$ is a completely monotone function on $\mathcal{C}_{d,n}$ and investigate the related properties. Furthermore, we provide (partial) characterization of forms, whose sublevel sets have finite Lebesgue volume. Finally, we discover an interesting property of a centered Gaussian distribution, establishing a connection between the matrix of its degree $d$ moments and the quadratic form given by the inverse of its covariance matrix. |
---|---|
ISSN: | 2470-6566 2470-6566 |
DOI: | 10.1137/22M1502458 |