Volumes of Sublevel Sets of Nonnegative Forms and Complete Monotonicity

Let $\mathcal{C}_{d,n}$ be the convex cone consisting of real $n$-variate degree $d$ forms that are strictly positive on $\mathbb{R}^n\setminus \{\mathbf{0}\}$. We prove that the Lebesgue volume of the sublevel set $\{g\leq 1\}$ of $g\in \mathcal{C}_{d,n}$ is a completely monotone function on $\math...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on applied algebra and geometry 2023-01, Vol.7 (4), p.768-785
Hauptverfasser: Kozhasov, Khazhgali, Lasserre, Jean B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $\mathcal{C}_{d,n}$ be the convex cone consisting of real $n$-variate degree $d$ forms that are strictly positive on $\mathbb{R}^n\setminus \{\mathbf{0}\}$. We prove that the Lebesgue volume of the sublevel set $\{g\leq 1\}$ of $g\in \mathcal{C}_{d,n}$ is a completely monotone function on $\mathcal{C}_{d,n}$ and investigate the related properties. Furthermore, we provide (partial) characterization of forms, whose sublevel sets have finite Lebesgue volume. Finally, we discover an interesting property of a centered Gaussian distribution, establishing a connection between the matrix of its degree $d$ moments and the quadratic form given by the inverse of its covariance matrix.
ISSN:2470-6566
2470-6566
DOI:10.1137/22M1502458