Dissipation inequalities for the analysis of a class of PDEs
In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary input...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2016-04, Vol.66, p.163-171 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 171 |
---|---|
container_issue | |
container_start_page | 163 |
container_title | Automatica (Oxford) |
container_volume | 66 |
creator | Ahmadi, Mohamadreza Valmorbida, Giorgio Papachristodoulou, Antonis |
description | In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples. |
doi_str_mv | 10.1016/j.automatica.2015.12.010 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03685127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109815005427</els_id><sourcerecordid>1816001746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKf_IZd60ZqTtGkK3sw5nTDQC70OaT5YRtdsTTvYv7ezopdenZzwvC-cByEMJAUC_H6Tqr4LW9V5rVJKIE-BpgTIGZqAKFhCBePnaEIIyRMgpbhEVzFuhjUDQSfo4cnH6HdDPDTYN3bfq9p33kbsQou7tcWqUfUx-oiDwwrrWsXv5_vTIl6jC6fqaG9-5hR9Pi8-5stk9fbyOp-tEp2xvEt0BcboKqto5nJdVtTkhkPFtDOas6J0zigjlCaFymlZOsHBOia0tYyJosjYFN2NvWtVy13rt6o9yqC8XM5W8vRHGBc50OIAA3s7srs27HsbO7n1Udu6Vo0NfZQggBMCRcYHVIyobkOMrXW_3UDkSa7cyD-58iRXApWD3CH6OEbtcPbB21ZG7W2jrfGt1Z00wf9f8gWTs4eM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816001746</pqid></control><display><type>article</type><title>Dissipation inequalities for the analysis of a class of PDEs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</creator><creatorcontrib>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</creatorcontrib><description>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2015.12.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Boundaries ; Convex optimization ; Dissipation ; Dissipation inequalities ; Distributed parameter systems ; Engineering Sciences ; Inequalities ; Interconnected systems ; Norms ; Partial differential equations ; Polynomials ; Programming ; Stability ; Sum-of-squares programming</subject><ispartof>Automatica (Oxford), 2016-04, Vol.66, p.163-171</ispartof><rights>2016 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</citedby><cites>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2015.12.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03685127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Valmorbida, Giorgio</creatorcontrib><creatorcontrib>Papachristodoulou, Antonis</creatorcontrib><title>Dissipation inequalities for the analysis of a class of PDEs</title><title>Automatica (Oxford)</title><description>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</description><subject>Automatic</subject><subject>Boundaries</subject><subject>Convex optimization</subject><subject>Dissipation</subject><subject>Dissipation inequalities</subject><subject>Distributed parameter systems</subject><subject>Engineering Sciences</subject><subject>Inequalities</subject><subject>Interconnected systems</subject><subject>Norms</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Programming</subject><subject>Stability</subject><subject>Sum-of-squares programming</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKf_IZd60ZqTtGkK3sw5nTDQC70OaT5YRtdsTTvYv7ezopdenZzwvC-cByEMJAUC_H6Tqr4LW9V5rVJKIE-BpgTIGZqAKFhCBePnaEIIyRMgpbhEVzFuhjUDQSfo4cnH6HdDPDTYN3bfq9p33kbsQou7tcWqUfUx-oiDwwrrWsXv5_vTIl6jC6fqaG9-5hR9Pi8-5stk9fbyOp-tEp2xvEt0BcboKqto5nJdVtTkhkPFtDOas6J0zigjlCaFymlZOsHBOia0tYyJosjYFN2NvWtVy13rt6o9yqC8XM5W8vRHGBc50OIAA3s7srs27HsbO7n1Udu6Vo0NfZQggBMCRcYHVIyobkOMrXW_3UDkSa7cyD-58iRXApWD3CH6OEbtcPbB21ZG7W2jrfGt1Z00wf9f8gWTs4eM</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ahmadi, Mohamadreza</creator><creator>Valmorbida, Giorgio</creator><creator>Papachristodoulou, Antonis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201604</creationdate><title>Dissipation inequalities for the analysis of a class of PDEs</title><author>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic</topic><topic>Boundaries</topic><topic>Convex optimization</topic><topic>Dissipation</topic><topic>Dissipation inequalities</topic><topic>Distributed parameter systems</topic><topic>Engineering Sciences</topic><topic>Inequalities</topic><topic>Interconnected systems</topic><topic>Norms</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Programming</topic><topic>Stability</topic><topic>Sum-of-squares programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Valmorbida, Giorgio</creatorcontrib><creatorcontrib>Papachristodoulou, Antonis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohamadreza</au><au>Valmorbida, Giorgio</au><au>Papachristodoulou, Antonis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation inequalities for the analysis of a class of PDEs</atitle><jtitle>Automatica (Oxford)</jtitle><date>2016-04</date><risdate>2016</risdate><volume>66</volume><spage>163</spage><epage>171</epage><pages>163-171</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2015.12.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2016-04, Vol.66, p.163-171 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03685127v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Automatic Boundaries Convex optimization Dissipation Dissipation inequalities Distributed parameter systems Engineering Sciences Inequalities Interconnected systems Norms Partial differential equations Polynomials Programming Stability Sum-of-squares programming |
title | Dissipation inequalities for the analysis of a class of PDEs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation%20inequalities%20for%20the%20analysis%20of%20a%20class%20of%20PDEs&rft.jtitle=Automatica%20(Oxford)&rft.au=Ahmadi,%20Mohamadreza&rft.date=2016-04&rft.volume=66&rft.spage=163&rft.epage=171&rft.pages=163-171&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2015.12.010&rft_dat=%3Cproquest_hal_p%3E1816001746%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816001746&rft_id=info:pmid/&rft_els_id=S0005109815005427&rfr_iscdi=true |