Dissipation inequalities for the analysis of a class of PDEs

In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2016-04, Vol.66, p.163-171
Hauptverfasser: Ahmadi, Mohamadreza, Valmorbida, Giorgio, Papachristodoulou, Antonis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 171
container_issue
container_start_page 163
container_title Automatica (Oxford)
container_volume 66
creator Ahmadi, Mohamadreza
Valmorbida, Giorgio
Papachristodoulou, Antonis
description In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.
doi_str_mv 10.1016/j.automatica.2015.12.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03685127v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109815005427</els_id><sourcerecordid>1816001746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</originalsourceid><addsrcrecordid>eNqFkF1LwzAUhoMoOKf_IZd60ZqTtGkK3sw5nTDQC70OaT5YRtdsTTvYv7ezopdenZzwvC-cByEMJAUC_H6Tqr4LW9V5rVJKIE-BpgTIGZqAKFhCBePnaEIIyRMgpbhEVzFuhjUDQSfo4cnH6HdDPDTYN3bfq9p33kbsQou7tcWqUfUx-oiDwwrrWsXv5_vTIl6jC6fqaG9-5hR9Pi8-5stk9fbyOp-tEp2xvEt0BcboKqto5nJdVtTkhkPFtDOas6J0zigjlCaFymlZOsHBOia0tYyJosjYFN2NvWtVy13rt6o9yqC8XM5W8vRHGBc50OIAA3s7srs27HsbO7n1Udu6Vo0NfZQggBMCRcYHVIyobkOMrXW_3UDkSa7cyD-58iRXApWD3CH6OEbtcPbB21ZG7W2jrfGt1Z00wf9f8gWTs4eM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1816001746</pqid></control><display><type>article</type><title>Dissipation inequalities for the analysis of a class of PDEs</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</creator><creatorcontrib>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</creatorcontrib><description>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2015.12.010</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Boundaries ; Convex optimization ; Dissipation ; Dissipation inequalities ; Distributed parameter systems ; Engineering Sciences ; Inequalities ; Interconnected systems ; Norms ; Partial differential equations ; Polynomials ; Programming ; Stability ; Sum-of-squares programming</subject><ispartof>Automatica (Oxford), 2016-04, Vol.66, p.163-171</ispartof><rights>2016 The Authors</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</citedby><cites>FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2015.12.010$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,781,785,886,3551,27926,27927,45997</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03685127$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Valmorbida, Giorgio</creatorcontrib><creatorcontrib>Papachristodoulou, Antonis</creatorcontrib><title>Dissipation inequalities for the analysis of a class of PDEs</title><title>Automatica (Oxford)</title><description>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</description><subject>Automatic</subject><subject>Boundaries</subject><subject>Convex optimization</subject><subject>Dissipation</subject><subject>Dissipation inequalities</subject><subject>Distributed parameter systems</subject><subject>Engineering Sciences</subject><subject>Inequalities</subject><subject>Interconnected systems</subject><subject>Norms</subject><subject>Partial differential equations</subject><subject>Polynomials</subject><subject>Programming</subject><subject>Stability</subject><subject>Sum-of-squares programming</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkF1LwzAUhoMoOKf_IZd60ZqTtGkK3sw5nTDQC70OaT5YRtdsTTvYv7ezopdenZzwvC-cByEMJAUC_H6Tqr4LW9V5rVJKIE-BpgTIGZqAKFhCBePnaEIIyRMgpbhEVzFuhjUDQSfo4cnH6HdDPDTYN3bfq9p33kbsQou7tcWqUfUx-oiDwwrrWsXv5_vTIl6jC6fqaG9-5hR9Pi8-5stk9fbyOp-tEp2xvEt0BcboKqto5nJdVtTkhkPFtDOas6J0zigjlCaFymlZOsHBOia0tYyJosjYFN2NvWtVy13rt6o9yqC8XM5W8vRHGBc50OIAA3s7srs27HsbO7n1Udu6Vo0NfZQggBMCRcYHVIyobkOMrXW_3UDkSa7cyD-58iRXApWD3CH6OEbtcPbB21ZG7W2jrfGt1Z00wf9f8gWTs4eM</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Ahmadi, Mohamadreza</creator><creator>Valmorbida, Giorgio</creator><creator>Papachristodoulou, Antonis</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope></search><sort><creationdate>201604</creationdate><title>Dissipation inequalities for the analysis of a class of PDEs</title><author>Ahmadi, Mohamadreza ; Valmorbida, Giorgio ; Papachristodoulou, Antonis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c435t-cb1ddcb4b24f5c9b2d5d61b3cfdc6379ffdad8ac07a5299f861ef38cee3387743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automatic</topic><topic>Boundaries</topic><topic>Convex optimization</topic><topic>Dissipation</topic><topic>Dissipation inequalities</topic><topic>Distributed parameter systems</topic><topic>Engineering Sciences</topic><topic>Inequalities</topic><topic>Interconnected systems</topic><topic>Norms</topic><topic>Partial differential equations</topic><topic>Polynomials</topic><topic>Programming</topic><topic>Stability</topic><topic>Sum-of-squares programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Mohamadreza</creatorcontrib><creatorcontrib>Valmorbida, Giorgio</creatorcontrib><creatorcontrib>Papachristodoulou, Antonis</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Mohamadreza</au><au>Valmorbida, Giorgio</au><au>Papachristodoulou, Antonis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissipation inequalities for the analysis of a class of PDEs</atitle><jtitle>Automatica (Oxford)</jtitle><date>2016-04</date><risdate>2016</risdate><volume>66</volume><spage>163</spage><epage>171</epage><pages>163-171</pages><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>In this paper, we develop dissipation inequalities for a class of well-posed systems described by partial differential equations (PDEs). We study passivity, reachability, induced input–output norm boundedness, and input-to-state stability (ISS). We consider both cases of in-domain and boundary inputs and outputs. We study the interconnection of PDE–PDE systems and formulate small gain conditions for stability. For PDEs polynomial in dependent and independent variables, we demonstrate that sum-of-squares (SOS) programming can be used to compute certificates for each property. Therefore, the solution to the proposed dissipation inequalities can be obtained via semi-definite programming. The results are illustrated with examples.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2015.12.010</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2016-04, Vol.66, p.163-171
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_03685127v1
source Elsevier ScienceDirect Journals Complete
subjects Automatic
Boundaries
Convex optimization
Dissipation
Dissipation inequalities
Distributed parameter systems
Engineering Sciences
Inequalities
Interconnected systems
Norms
Partial differential equations
Polynomials
Programming
Stability
Sum-of-squares programming
title Dissipation inequalities for the analysis of a class of PDEs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T18%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissipation%20inequalities%20for%20the%20analysis%20of%20a%20class%20of%20PDEs&rft.jtitle=Automatica%20(Oxford)&rft.au=Ahmadi,%20Mohamadreza&rft.date=2016-04&rft.volume=66&rft.spage=163&rft.epage=171&rft.pages=163-171&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2015.12.010&rft_dat=%3Cproquest_hal_p%3E1816001746%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1816001746&rft_id=info:pmid/&rft_els_id=S0005109815005427&rfr_iscdi=true