Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge

•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical image analysis 2022-07, Vol.79, p.102428-102428, Article 102428
Hauptverfasser: Lalande, Alain, Chen, Zhihao, Pommier, Thibaut, Decourselle, Thomas, Qayyum, Abdul, Salomon, Michel, Ginhac, Dominique, Skandarani, Youssef, Boucher, Arnaud, Brahim, Khawla, de Bruijne, Marleen, Camarasa, Robin, Correia, Teresa M., Feng, Xue, Girum, Kibrom B., Hennemuth, Anja, Huellebrand, Markus, Hussain, Raabid, Ivantsits, Matthias, Ma, Jun, Meyer, Craig, Sharma, Rishabh, Shi, Jixi, Tsekos, Nikolaos V., Varela, Marta, Wang, Xiyue, Yang, Sen, Zhang, Hannu, Zhang, Yichi, Zhou, Yuncheng, Zhuang, Xiahai, Couturier, Raphael, Meriaudeau, Fabrice
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102428
container_issue
container_start_page 102428
container_title Medical image analysis
container_volume 79
creator Lalande, Alain
Chen, Zhihao
Pommier, Thibaut
Decourselle, Thomas
Qayyum, Abdul
Salomon, Michel
Ginhac, Dominique
Skandarani, Youssef
Boucher, Arnaud
Brahim, Khawla
de Bruijne, Marleen
Camarasa, Robin
Correia, Teresa M.
Feng, Xue
Girum, Kibrom B.
Hennemuth, Anja
Huellebrand, Markus
Hussain, Raabid
Ivantsits, Matthias
Ma, Jun
Meyer, Craig
Sharma, Rishabh
Shi, Jixi
Tsekos, Nikolaos V.
Varela, Marta
Wang, Xiyue
Yang, Sen
Zhang, Hannu
Zhang, Yichi
Zhou, Yuncheng
Zhuang, Xiahai
Couturier, Raphael
Meriaudeau, Fabrice
description •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.
doi_str_mv 10.1016/j.media.2022.102428
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03682606v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841522000792</els_id><sourcerecordid>2726058222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</originalsourceid><addsrcrecordid>eNp9kbFu2zAQhomiRZO4fYICBYEu7SCXpCRKGjoEjtMYcBAg8E6cqFNMQyJdUjKQty9VpR4yZCHvjt_9R_In5AtnS864_HlY9tgYWAomRKyITJTvyCVPJU_KTKTvzzHPL8hVCAfGWJFl7CO5SPOcsawqL4m9QTzSDsFbY59oj8PeNYG2zlMYB9fDYDTFE3RjjJylrqUNdvCMDUW7B6uxRzsk94-bJd3tkXoMYzeEiRtiur7f3KxXVO-h69A-4SfyoYUu4OeXfUF2t-vd6i7ZPvzerK63ic6qbEh4ClUtZVti3TINXEtR1lAVKVaFbgCbumqlBJZrjkVVVgglFJoLnWmRtZguyI9ZNs5VR2968M_KgVF311s11VgqSyGZPPHIfp_Zo3d_RgyD6k3Q2HVg0Y1BCZlXImUsLgvy7RV6cKO38SFKFFEuL4WYqHSmtHcheGzPN-BMTc6pg_rnnJqcU7Nzsevri_ZYx9Nzz3-rIvBrBjD-28mgV0EbjAY0xqMeVOPMmwP-Ak7ZqYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726058222</pqid></control><display><type>article</type><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><source>Elsevier ScienceDirect Journals</source><creator>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</creator><creatorcontrib>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</creatorcontrib><description>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102428</identifier><identifier>PMID: 35500498</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>CNN ; Computer Science ; Contrast agents ; DE-MRI ; Deep learning ; Emergency medical care ; Evaluation ; Heart attacks ; Infarction ; Injection ; Machine learning ; Magnetic resonance imaging ; Medical Imaging ; Myocardial infarction ; Myocardium ; Reperfusion ; Segmentation ; Teaching methods</subject><ispartof>Medical image analysis, 2022-07, Vol.79, p.102428-102428, Article 102428</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</citedby><cites>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</cites><orcidid>0000-0002-5911-2010 ; 0000-0002-1637-8855 ; 0000-0001-6794-5306 ; 0000-0002-7970-366X ; 0000-0002-9959-6056 ; 0000-0003-4057-7851 ; 0000-0003-4948-0917 ; 0000-0002-4292-6835 ; 0000-0002-7288-3848 ; 0000-0001-9151-6763 ; 0000-0002-6328-902X ; 0000-0003-2511-0225 ; 0000-0002-3597-9090 ; 0000-0002-6906-813X ; 0000-0002-2181-9889 ; 0000-0002-8515-082X ; 0009-0002-3873-1127 ; 0000-0001-7776-0751 ; 0000-0002-8656-9913 ; 0000-0002-1137-9349 ; 0000-0002-0227-8167 ; 0000-0003-1252-439X ; 0000-0003-3102-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841522000792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35500498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03682606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalande, Alain</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Pommier, Thibaut</creatorcontrib><creatorcontrib>Decourselle, Thomas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Salomon, Michel</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Skandarani, Youssef</creatorcontrib><creatorcontrib>Boucher, Arnaud</creatorcontrib><creatorcontrib>Brahim, Khawla</creatorcontrib><creatorcontrib>de Bruijne, Marleen</creatorcontrib><creatorcontrib>Camarasa, Robin</creatorcontrib><creatorcontrib>Correia, Teresa M.</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Girum, Kibrom B.</creatorcontrib><creatorcontrib>Hennemuth, Anja</creatorcontrib><creatorcontrib>Huellebrand, Markus</creatorcontrib><creatorcontrib>Hussain, Raabid</creatorcontrib><creatorcontrib>Ivantsits, Matthias</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Meyer, Craig</creatorcontrib><creatorcontrib>Sharma, Rishabh</creatorcontrib><creatorcontrib>Shi, Jixi</creatorcontrib><creatorcontrib>Tsekos, Nikolaos V.</creatorcontrib><creatorcontrib>Varela, Marta</creatorcontrib><creatorcontrib>Wang, Xiyue</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Zhang, Hannu</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhou, Yuncheng</creatorcontrib><creatorcontrib>Zhuang, Xiahai</creatorcontrib><creatorcontrib>Couturier, Raphael</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</description><subject>CNN</subject><subject>Computer Science</subject><subject>Contrast agents</subject><subject>DE-MRI</subject><subject>Deep learning</subject><subject>Emergency medical care</subject><subject>Evaluation</subject><subject>Heart attacks</subject><subject>Infarction</subject><subject>Injection</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical Imaging</subject><subject>Myocardial infarction</subject><subject>Myocardium</subject><subject>Reperfusion</subject><subject>Segmentation</subject><subject>Teaching methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kbFu2zAQhomiRZO4fYICBYEu7SCXpCRKGjoEjtMYcBAg8E6cqFNMQyJdUjKQty9VpR4yZCHvjt_9R_In5AtnS864_HlY9tgYWAomRKyITJTvyCVPJU_KTKTvzzHPL8hVCAfGWJFl7CO5SPOcsawqL4m9QTzSDsFbY59oj8PeNYG2zlMYB9fDYDTFE3RjjJylrqUNdvCMDUW7B6uxRzsk94-bJd3tkXoMYzeEiRtiur7f3KxXVO-h69A-4SfyoYUu4OeXfUF2t-vd6i7ZPvzerK63ic6qbEh4ClUtZVti3TINXEtR1lAVKVaFbgCbumqlBJZrjkVVVgglFJoLnWmRtZguyI9ZNs5VR2968M_KgVF311s11VgqSyGZPPHIfp_Zo3d_RgyD6k3Q2HVg0Y1BCZlXImUsLgvy7RV6cKO38SFKFFEuL4WYqHSmtHcheGzPN-BMTc6pg_rnnJqcU7Nzsevri_ZYx9Nzz3-rIvBrBjD-28mgV0EbjAY0xqMeVOPMmwP-Ak7ZqYw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lalande, Alain</creator><creator>Chen, Zhihao</creator><creator>Pommier, Thibaut</creator><creator>Decourselle, Thomas</creator><creator>Qayyum, Abdul</creator><creator>Salomon, Michel</creator><creator>Ginhac, Dominique</creator><creator>Skandarani, Youssef</creator><creator>Boucher, Arnaud</creator><creator>Brahim, Khawla</creator><creator>de Bruijne, Marleen</creator><creator>Camarasa, Robin</creator><creator>Correia, Teresa M.</creator><creator>Feng, Xue</creator><creator>Girum, Kibrom B.</creator><creator>Hennemuth, Anja</creator><creator>Huellebrand, Markus</creator><creator>Hussain, Raabid</creator><creator>Ivantsits, Matthias</creator><creator>Ma, Jun</creator><creator>Meyer, Craig</creator><creator>Sharma, Rishabh</creator><creator>Shi, Jixi</creator><creator>Tsekos, Nikolaos V.</creator><creator>Varela, Marta</creator><creator>Wang, Xiyue</creator><creator>Yang, Sen</creator><creator>Zhang, Hannu</creator><creator>Zhang, Yichi</creator><creator>Zhou, Yuncheng</creator><creator>Zhuang, Xiahai</creator><creator>Couturier, Raphael</creator><creator>Meriaudeau, Fabrice</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5911-2010</orcidid><orcidid>https://orcid.org/0000-0002-1637-8855</orcidid><orcidid>https://orcid.org/0000-0001-6794-5306</orcidid><orcidid>https://orcid.org/0000-0002-7970-366X</orcidid><orcidid>https://orcid.org/0000-0002-9959-6056</orcidid><orcidid>https://orcid.org/0000-0003-4057-7851</orcidid><orcidid>https://orcid.org/0000-0003-4948-0917</orcidid><orcidid>https://orcid.org/0000-0002-4292-6835</orcidid><orcidid>https://orcid.org/0000-0002-7288-3848</orcidid><orcidid>https://orcid.org/0000-0001-9151-6763</orcidid><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid><orcidid>https://orcid.org/0000-0003-2511-0225</orcidid><orcidid>https://orcid.org/0000-0002-3597-9090</orcidid><orcidid>https://orcid.org/0000-0002-6906-813X</orcidid><orcidid>https://orcid.org/0000-0002-2181-9889</orcidid><orcidid>https://orcid.org/0000-0002-8515-082X</orcidid><orcidid>https://orcid.org/0009-0002-3873-1127</orcidid><orcidid>https://orcid.org/0000-0001-7776-0751</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid><orcidid>https://orcid.org/0000-0002-1137-9349</orcidid><orcidid>https://orcid.org/0000-0002-0227-8167</orcidid><orcidid>https://orcid.org/0000-0003-1252-439X</orcidid><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid></search><sort><creationdate>20220701</creationdate><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><author>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CNN</topic><topic>Computer Science</topic><topic>Contrast agents</topic><topic>DE-MRI</topic><topic>Deep learning</topic><topic>Emergency medical care</topic><topic>Evaluation</topic><topic>Heart attacks</topic><topic>Infarction</topic><topic>Injection</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical Imaging</topic><topic>Myocardial infarction</topic><topic>Myocardium</topic><topic>Reperfusion</topic><topic>Segmentation</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalande, Alain</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Pommier, Thibaut</creatorcontrib><creatorcontrib>Decourselle, Thomas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Salomon, Michel</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Skandarani, Youssef</creatorcontrib><creatorcontrib>Boucher, Arnaud</creatorcontrib><creatorcontrib>Brahim, Khawla</creatorcontrib><creatorcontrib>de Bruijne, Marleen</creatorcontrib><creatorcontrib>Camarasa, Robin</creatorcontrib><creatorcontrib>Correia, Teresa M.</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Girum, Kibrom B.</creatorcontrib><creatorcontrib>Hennemuth, Anja</creatorcontrib><creatorcontrib>Huellebrand, Markus</creatorcontrib><creatorcontrib>Hussain, Raabid</creatorcontrib><creatorcontrib>Ivantsits, Matthias</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Meyer, Craig</creatorcontrib><creatorcontrib>Sharma, Rishabh</creatorcontrib><creatorcontrib>Shi, Jixi</creatorcontrib><creatorcontrib>Tsekos, Nikolaos V.</creatorcontrib><creatorcontrib>Varela, Marta</creatorcontrib><creatorcontrib>Wang, Xiyue</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Zhang, Hannu</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhou, Yuncheng</creatorcontrib><creatorcontrib>Zhuang, Xiahai</creatorcontrib><creatorcontrib>Couturier, Raphael</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalande, Alain</au><au>Chen, Zhihao</au><au>Pommier, Thibaut</au><au>Decourselle, Thomas</au><au>Qayyum, Abdul</au><au>Salomon, Michel</au><au>Ginhac, Dominique</au><au>Skandarani, Youssef</au><au>Boucher, Arnaud</au><au>Brahim, Khawla</au><au>de Bruijne, Marleen</au><au>Camarasa, Robin</au><au>Correia, Teresa M.</au><au>Feng, Xue</au><au>Girum, Kibrom B.</au><au>Hennemuth, Anja</au><au>Huellebrand, Markus</au><au>Hussain, Raabid</au><au>Ivantsits, Matthias</au><au>Ma, Jun</au><au>Meyer, Craig</au><au>Sharma, Rishabh</au><au>Shi, Jixi</au><au>Tsekos, Nikolaos V.</au><au>Varela, Marta</au><au>Wang, Xiyue</au><au>Yang, Sen</au><au>Zhang, Hannu</au><au>Zhang, Yichi</au><au>Zhou, Yuncheng</au><au>Zhuang, Xiahai</au><au>Couturier, Raphael</au><au>Meriaudeau, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><spage>102428</spage><epage>102428</epage><pages>102428-102428</pages><artnum>102428</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction). [Display omitted] A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35500498</pmid><doi>10.1016/j.media.2022.102428</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5911-2010</orcidid><orcidid>https://orcid.org/0000-0002-1637-8855</orcidid><orcidid>https://orcid.org/0000-0001-6794-5306</orcidid><orcidid>https://orcid.org/0000-0002-7970-366X</orcidid><orcidid>https://orcid.org/0000-0002-9959-6056</orcidid><orcidid>https://orcid.org/0000-0003-4057-7851</orcidid><orcidid>https://orcid.org/0000-0003-4948-0917</orcidid><orcidid>https://orcid.org/0000-0002-4292-6835</orcidid><orcidid>https://orcid.org/0000-0002-7288-3848</orcidid><orcidid>https://orcid.org/0000-0001-9151-6763</orcidid><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid><orcidid>https://orcid.org/0000-0003-2511-0225</orcidid><orcidid>https://orcid.org/0000-0002-3597-9090</orcidid><orcidid>https://orcid.org/0000-0002-6906-813X</orcidid><orcidid>https://orcid.org/0000-0002-2181-9889</orcidid><orcidid>https://orcid.org/0000-0002-8515-082X</orcidid><orcidid>https://orcid.org/0009-0002-3873-1127</orcidid><orcidid>https://orcid.org/0000-0001-7776-0751</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid><orcidid>https://orcid.org/0000-0002-1137-9349</orcidid><orcidid>https://orcid.org/0000-0002-0227-8167</orcidid><orcidid>https://orcid.org/0000-0003-1252-439X</orcidid><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1361-8415
ispartof Medical image analysis, 2022-07, Vol.79, p.102428-102428, Article 102428
issn 1361-8415
1361-8423
language eng
recordid cdi_hal_primary_oai_HAL_hal_03682606v1
source Elsevier ScienceDirect Journals
subjects CNN
Computer Science
Contrast agents
DE-MRI
Deep learning
Emergency medical care
Evaluation
Heart attacks
Infarction
Injection
Machine learning
Magnetic resonance imaging
Medical Imaging
Myocardial infarction
Myocardium
Reperfusion
Segmentation
Teaching methods
title Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20methods%20for%20automatic%20evaluation%20of%20delayed%20enhancement-MRI.%20The%20results%20of%20the%20EMIDEC%20challenge&rft.jtitle=Medical%20image%20analysis&rft.au=Lalande,%20Alain&rft.date=2022-07-01&rft.volume=79&rft.spage=102428&rft.epage=102428&rft.pages=102428-102428&rft.artnum=102428&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102428&rft_dat=%3Cproquest_hal_p%3E2726058222%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726058222&rft_id=info:pmid/35500498&rft_els_id=S1361841522000792&rfr_iscdi=true