Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge
•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to s...
Gespeichert in:
Veröffentlicht in: | Medical image analysis 2022-07, Vol.79, p.102428-102428, Article 102428 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 102428 |
---|---|
container_issue | |
container_start_page | 102428 |
container_title | Medical image analysis |
container_volume | 79 |
creator | Lalande, Alain Chen, Zhihao Pommier, Thibaut Decourselle, Thomas Qayyum, Abdul Salomon, Michel Ginhac, Dominique Skandarani, Youssef Boucher, Arnaud Brahim, Khawla de Bruijne, Marleen Camarasa, Robin Correia, Teresa M. Feng, Xue Girum, Kibrom B. Hennemuth, Anja Huellebrand, Markus Hussain, Raabid Ivantsits, Matthias Ma, Jun Meyer, Craig Sharma, Rishabh Shi, Jixi Tsekos, Nikolaos V. Varela, Marta Wang, Xiyue Yang, Sen Zhang, Hannu Zhang, Yichi Zhou, Yuncheng Zhuang, Xiahai Couturier, Raphael Meriaudeau, Fabrice |
description | •Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction).
[Display omitted]
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures. |
doi_str_mv | 10.1016/j.media.2022.102428 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03682606v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1361841522000792</els_id><sourcerecordid>2726058222</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</originalsourceid><addsrcrecordid>eNp9kbFu2zAQhomiRZO4fYICBYEu7SCXpCRKGjoEjtMYcBAg8E6cqFNMQyJdUjKQty9VpR4yZCHvjt_9R_In5AtnS864_HlY9tgYWAomRKyITJTvyCVPJU_KTKTvzzHPL8hVCAfGWJFl7CO5SPOcsawqL4m9QTzSDsFbY59oj8PeNYG2zlMYB9fDYDTFE3RjjJylrqUNdvCMDUW7B6uxRzsk94-bJd3tkXoMYzeEiRtiur7f3KxXVO-h69A-4SfyoYUu4OeXfUF2t-vd6i7ZPvzerK63ic6qbEh4ClUtZVti3TINXEtR1lAVKVaFbgCbumqlBJZrjkVVVgglFJoLnWmRtZguyI9ZNs5VR2968M_KgVF311s11VgqSyGZPPHIfp_Zo3d_RgyD6k3Q2HVg0Y1BCZlXImUsLgvy7RV6cKO38SFKFFEuL4WYqHSmtHcheGzPN-BMTc6pg_rnnJqcU7Nzsevri_ZYx9Nzz3-rIvBrBjD-28mgV0EbjAY0xqMeVOPMmwP-Ak7ZqYw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726058222</pqid></control><display><type>article</type><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><source>Elsevier ScienceDirect Journals</source><creator>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</creator><creatorcontrib>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</creatorcontrib><description>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction).
[Display omitted]
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</description><identifier>ISSN: 1361-8415</identifier><identifier>EISSN: 1361-8423</identifier><identifier>DOI: 10.1016/j.media.2022.102428</identifier><identifier>PMID: 35500498</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>CNN ; Computer Science ; Contrast agents ; DE-MRI ; Deep learning ; Emergency medical care ; Evaluation ; Heart attacks ; Infarction ; Injection ; Machine learning ; Magnetic resonance imaging ; Medical Imaging ; Myocardial infarction ; Myocardium ; Reperfusion ; Segmentation ; Teaching methods</subject><ispartof>Medical image analysis, 2022-07, Vol.79, p.102428-102428, Article 102428</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier B.V.</rights><rights>Copyright Elsevier BV Jul 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</citedby><cites>FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</cites><orcidid>0000-0002-5911-2010 ; 0000-0002-1637-8855 ; 0000-0001-6794-5306 ; 0000-0002-7970-366X ; 0000-0002-9959-6056 ; 0000-0003-4057-7851 ; 0000-0003-4948-0917 ; 0000-0002-4292-6835 ; 0000-0002-7288-3848 ; 0000-0001-9151-6763 ; 0000-0002-6328-902X ; 0000-0003-2511-0225 ; 0000-0002-3597-9090 ; 0000-0002-6906-813X ; 0000-0002-2181-9889 ; 0000-0002-8515-082X ; 0009-0002-3873-1127 ; 0000-0001-7776-0751 ; 0000-0002-8656-9913 ; 0000-0002-1137-9349 ; 0000-0002-0227-8167 ; 0000-0003-1252-439X ; 0000-0003-3102-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1361841522000792$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35500498$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03682606$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lalande, Alain</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Pommier, Thibaut</creatorcontrib><creatorcontrib>Decourselle, Thomas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Salomon, Michel</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Skandarani, Youssef</creatorcontrib><creatorcontrib>Boucher, Arnaud</creatorcontrib><creatorcontrib>Brahim, Khawla</creatorcontrib><creatorcontrib>de Bruijne, Marleen</creatorcontrib><creatorcontrib>Camarasa, Robin</creatorcontrib><creatorcontrib>Correia, Teresa M.</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Girum, Kibrom B.</creatorcontrib><creatorcontrib>Hennemuth, Anja</creatorcontrib><creatorcontrib>Huellebrand, Markus</creatorcontrib><creatorcontrib>Hussain, Raabid</creatorcontrib><creatorcontrib>Ivantsits, Matthias</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Meyer, Craig</creatorcontrib><creatorcontrib>Sharma, Rishabh</creatorcontrib><creatorcontrib>Shi, Jixi</creatorcontrib><creatorcontrib>Tsekos, Nikolaos V.</creatorcontrib><creatorcontrib>Varela, Marta</creatorcontrib><creatorcontrib>Wang, Xiyue</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Zhang, Hannu</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhou, Yuncheng</creatorcontrib><creatorcontrib>Zhuang, Xiahai</creatorcontrib><creatorcontrib>Couturier, Raphael</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><title>Medical image analysis</title><addtitle>Med Image Anal</addtitle><description>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction).
[Display omitted]
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</description><subject>CNN</subject><subject>Computer Science</subject><subject>Contrast agents</subject><subject>DE-MRI</subject><subject>Deep learning</subject><subject>Emergency medical care</subject><subject>Evaluation</subject><subject>Heart attacks</subject><subject>Infarction</subject><subject>Injection</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Medical Imaging</subject><subject>Myocardial infarction</subject><subject>Myocardium</subject><subject>Reperfusion</subject><subject>Segmentation</subject><subject>Teaching methods</subject><issn>1361-8415</issn><issn>1361-8423</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kbFu2zAQhomiRZO4fYICBYEu7SCXpCRKGjoEjtMYcBAg8E6cqFNMQyJdUjKQty9VpR4yZCHvjt_9R_In5AtnS864_HlY9tgYWAomRKyITJTvyCVPJU_KTKTvzzHPL8hVCAfGWJFl7CO5SPOcsawqL4m9QTzSDsFbY59oj8PeNYG2zlMYB9fDYDTFE3RjjJylrqUNdvCMDUW7B6uxRzsk94-bJd3tkXoMYzeEiRtiur7f3KxXVO-h69A-4SfyoYUu4OeXfUF2t-vd6i7ZPvzerK63ic6qbEh4ClUtZVti3TINXEtR1lAVKVaFbgCbumqlBJZrjkVVVgglFJoLnWmRtZguyI9ZNs5VR2968M_KgVF311s11VgqSyGZPPHIfp_Zo3d_RgyD6k3Q2HVg0Y1BCZlXImUsLgvy7RV6cKO38SFKFFEuL4WYqHSmtHcheGzPN-BMTc6pg_rnnJqcU7Nzsevri_ZYx9Nzz3-rIvBrBjD-28mgV0EbjAY0xqMeVOPMmwP-Ak7ZqYw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lalande, Alain</creator><creator>Chen, Zhihao</creator><creator>Pommier, Thibaut</creator><creator>Decourselle, Thomas</creator><creator>Qayyum, Abdul</creator><creator>Salomon, Michel</creator><creator>Ginhac, Dominique</creator><creator>Skandarani, Youssef</creator><creator>Boucher, Arnaud</creator><creator>Brahim, Khawla</creator><creator>de Bruijne, Marleen</creator><creator>Camarasa, Robin</creator><creator>Correia, Teresa M.</creator><creator>Feng, Xue</creator><creator>Girum, Kibrom B.</creator><creator>Hennemuth, Anja</creator><creator>Huellebrand, Markus</creator><creator>Hussain, Raabid</creator><creator>Ivantsits, Matthias</creator><creator>Ma, Jun</creator><creator>Meyer, Craig</creator><creator>Sharma, Rishabh</creator><creator>Shi, Jixi</creator><creator>Tsekos, Nikolaos V.</creator><creator>Varela, Marta</creator><creator>Wang, Xiyue</creator><creator>Yang, Sen</creator><creator>Zhang, Hannu</creator><creator>Zhang, Yichi</creator><creator>Zhou, Yuncheng</creator><creator>Zhuang, Xiahai</creator><creator>Couturier, Raphael</creator><creator>Meriaudeau, Fabrice</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5911-2010</orcidid><orcidid>https://orcid.org/0000-0002-1637-8855</orcidid><orcidid>https://orcid.org/0000-0001-6794-5306</orcidid><orcidid>https://orcid.org/0000-0002-7970-366X</orcidid><orcidid>https://orcid.org/0000-0002-9959-6056</orcidid><orcidid>https://orcid.org/0000-0003-4057-7851</orcidid><orcidid>https://orcid.org/0000-0003-4948-0917</orcidid><orcidid>https://orcid.org/0000-0002-4292-6835</orcidid><orcidid>https://orcid.org/0000-0002-7288-3848</orcidid><orcidid>https://orcid.org/0000-0001-9151-6763</orcidid><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid><orcidid>https://orcid.org/0000-0003-2511-0225</orcidid><orcidid>https://orcid.org/0000-0002-3597-9090</orcidid><orcidid>https://orcid.org/0000-0002-6906-813X</orcidid><orcidid>https://orcid.org/0000-0002-2181-9889</orcidid><orcidid>https://orcid.org/0000-0002-8515-082X</orcidid><orcidid>https://orcid.org/0009-0002-3873-1127</orcidid><orcidid>https://orcid.org/0000-0001-7776-0751</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid><orcidid>https://orcid.org/0000-0002-1137-9349</orcidid><orcidid>https://orcid.org/0000-0002-0227-8167</orcidid><orcidid>https://orcid.org/0000-0003-1252-439X</orcidid><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid></search><sort><creationdate>20220701</creationdate><title>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</title><author>Lalande, Alain ; Chen, Zhihao ; Pommier, Thibaut ; Decourselle, Thomas ; Qayyum, Abdul ; Salomon, Michel ; Ginhac, Dominique ; Skandarani, Youssef ; Boucher, Arnaud ; Brahim, Khawla ; de Bruijne, Marleen ; Camarasa, Robin ; Correia, Teresa M. ; Feng, Xue ; Girum, Kibrom B. ; Hennemuth, Anja ; Huellebrand, Markus ; Hussain, Raabid ; Ivantsits, Matthias ; Ma, Jun ; Meyer, Craig ; Sharma, Rishabh ; Shi, Jixi ; Tsekos, Nikolaos V. ; Varela, Marta ; Wang, Xiyue ; Yang, Sen ; Zhang, Hannu ; Zhang, Yichi ; Zhou, Yuncheng ; Zhuang, Xiahai ; Couturier, Raphael ; Meriaudeau, Fabrice</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-13a9b66f8ebf0ca1c628ba973e97cdaedb9f66a05c1e7989ea8a7c12c4c24fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>CNN</topic><topic>Computer Science</topic><topic>Contrast agents</topic><topic>DE-MRI</topic><topic>Deep learning</topic><topic>Emergency medical care</topic><topic>Evaluation</topic><topic>Heart attacks</topic><topic>Infarction</topic><topic>Injection</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Medical Imaging</topic><topic>Myocardial infarction</topic><topic>Myocardium</topic><topic>Reperfusion</topic><topic>Segmentation</topic><topic>Teaching methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lalande, Alain</creatorcontrib><creatorcontrib>Chen, Zhihao</creatorcontrib><creatorcontrib>Pommier, Thibaut</creatorcontrib><creatorcontrib>Decourselle, Thomas</creatorcontrib><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Salomon, Michel</creatorcontrib><creatorcontrib>Ginhac, Dominique</creatorcontrib><creatorcontrib>Skandarani, Youssef</creatorcontrib><creatorcontrib>Boucher, Arnaud</creatorcontrib><creatorcontrib>Brahim, Khawla</creatorcontrib><creatorcontrib>de Bruijne, Marleen</creatorcontrib><creatorcontrib>Camarasa, Robin</creatorcontrib><creatorcontrib>Correia, Teresa M.</creatorcontrib><creatorcontrib>Feng, Xue</creatorcontrib><creatorcontrib>Girum, Kibrom B.</creatorcontrib><creatorcontrib>Hennemuth, Anja</creatorcontrib><creatorcontrib>Huellebrand, Markus</creatorcontrib><creatorcontrib>Hussain, Raabid</creatorcontrib><creatorcontrib>Ivantsits, Matthias</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Meyer, Craig</creatorcontrib><creatorcontrib>Sharma, Rishabh</creatorcontrib><creatorcontrib>Shi, Jixi</creatorcontrib><creatorcontrib>Tsekos, Nikolaos V.</creatorcontrib><creatorcontrib>Varela, Marta</creatorcontrib><creatorcontrib>Wang, Xiyue</creatorcontrib><creatorcontrib>Yang, Sen</creatorcontrib><creatorcontrib>Zhang, Hannu</creatorcontrib><creatorcontrib>Zhang, Yichi</creatorcontrib><creatorcontrib>Zhou, Yuncheng</creatorcontrib><creatorcontrib>Zhuang, Xiahai</creatorcontrib><creatorcontrib>Couturier, Raphael</creatorcontrib><creatorcontrib>Meriaudeau, Fabrice</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Medical image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lalande, Alain</au><au>Chen, Zhihao</au><au>Pommier, Thibaut</au><au>Decourselle, Thomas</au><au>Qayyum, Abdul</au><au>Salomon, Michel</au><au>Ginhac, Dominique</au><au>Skandarani, Youssef</au><au>Boucher, Arnaud</au><au>Brahim, Khawla</au><au>de Bruijne, Marleen</au><au>Camarasa, Robin</au><au>Correia, Teresa M.</au><au>Feng, Xue</au><au>Girum, Kibrom B.</au><au>Hennemuth, Anja</au><au>Huellebrand, Markus</au><au>Hussain, Raabid</au><au>Ivantsits, Matthias</au><au>Ma, Jun</au><au>Meyer, Craig</au><au>Sharma, Rishabh</au><au>Shi, Jixi</au><au>Tsekos, Nikolaos V.</au><au>Varela, Marta</au><au>Wang, Xiyue</au><au>Yang, Sen</au><au>Zhang, Hannu</au><au>Zhang, Yichi</au><au>Zhou, Yuncheng</au><au>Zhuang, Xiahai</au><au>Couturier, Raphael</au><au>Meriaudeau, Fabrice</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge</atitle><jtitle>Medical image analysis</jtitle><addtitle>Med Image Anal</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>79</volume><spage>102428</spage><epage>102428</epage><pages>102428-102428</pages><artnum>102428</artnum><issn>1361-8415</issn><eissn>1361-8423</eissn><abstract>•Dataset of 150 DE-MRI exams in short-axis orientation with the manual drawing.•The used dataset include clinical information that could be recorded in emergency department in addition to the MR images.•The first objective is to compare the latest methodological developments in image processing to segment the DE-MRI exams.•The second objective is to automatically classify the exams into non-pathological and pathological (myocardial infarction).
[Display omitted]
A key factor for assessing the state of the heart after myocardial infarction (MI) is to measure whether the myocardium segment is viable after reperfusion or revascularization therapy. Delayed enhancement-MRI or DE-MRI, which is performed 10 min after injection of the contrast agent, provides high contrast between viable and nonviable myocardium and is therefore a method of choice to evaluate the extent of MI. To automatically assess myocardial status, the results of the EMIDEC challenge that focused on this task are presented in this paper. The challenge’s main objectives were twofold. First, to evaluate if deep learning methods can distinguish between non-infarct and pathological exams, i.e. exams with or without hyperenhanced area. Second, to automatically calculate the extent of myocardial infarction. The publicly available database consists of 150 exams divided into 50 cases without any hyperenhanced area after injection of a contrast agent and 100 cases with myocardial infarction (and then with a hyperenhanced area on DE-MRI), whatever their inclusion in the cardiac emergency department. Along with MRI, clinical characteristics are also provided. The obtained results issued from several works show that the automatic classification of an exam is a reachable task (the best method providing an accuracy of 0.92), and the automatic segmentation of the myocardium is possible. However, the segmentation of the diseased area needs to be improved, mainly due to the small size of these areas and the lack of contrast with the surrounding structures.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>35500498</pmid><doi>10.1016/j.media.2022.102428</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5911-2010</orcidid><orcidid>https://orcid.org/0000-0002-1637-8855</orcidid><orcidid>https://orcid.org/0000-0001-6794-5306</orcidid><orcidid>https://orcid.org/0000-0002-7970-366X</orcidid><orcidid>https://orcid.org/0000-0002-9959-6056</orcidid><orcidid>https://orcid.org/0000-0003-4057-7851</orcidid><orcidid>https://orcid.org/0000-0003-4948-0917</orcidid><orcidid>https://orcid.org/0000-0002-4292-6835</orcidid><orcidid>https://orcid.org/0000-0002-7288-3848</orcidid><orcidid>https://orcid.org/0000-0001-9151-6763</orcidid><orcidid>https://orcid.org/0000-0002-6328-902X</orcidid><orcidid>https://orcid.org/0000-0003-2511-0225</orcidid><orcidid>https://orcid.org/0000-0002-3597-9090</orcidid><orcidid>https://orcid.org/0000-0002-6906-813X</orcidid><orcidid>https://orcid.org/0000-0002-2181-9889</orcidid><orcidid>https://orcid.org/0000-0002-8515-082X</orcidid><orcidid>https://orcid.org/0009-0002-3873-1127</orcidid><orcidid>https://orcid.org/0000-0001-7776-0751</orcidid><orcidid>https://orcid.org/0000-0002-8656-9913</orcidid><orcidid>https://orcid.org/0000-0002-1137-9349</orcidid><orcidid>https://orcid.org/0000-0002-0227-8167</orcidid><orcidid>https://orcid.org/0000-0003-1252-439X</orcidid><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1361-8415 |
ispartof | Medical image analysis, 2022-07, Vol.79, p.102428-102428, Article 102428 |
issn | 1361-8415 1361-8423 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03682606v1 |
source | Elsevier ScienceDirect Journals |
subjects | CNN Computer Science Contrast agents DE-MRI Deep learning Emergency medical care Evaluation Heart attacks Infarction Injection Machine learning Magnetic resonance imaging Medical Imaging Myocardial infarction Myocardium Reperfusion Segmentation Teaching methods |
title | Deep learning methods for automatic evaluation of delayed enhancement-MRI. The results of the EMIDEC challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T16%3A07%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20methods%20for%20automatic%20evaluation%20of%20delayed%20enhancement-MRI.%20The%20results%20of%20the%20EMIDEC%20challenge&rft.jtitle=Medical%20image%20analysis&rft.au=Lalande,%20Alain&rft.date=2022-07-01&rft.volume=79&rft.spage=102428&rft.epage=102428&rft.pages=102428-102428&rft.artnum=102428&rft.issn=1361-8415&rft.eissn=1361-8423&rft_id=info:doi/10.1016/j.media.2022.102428&rft_dat=%3Cproquest_hal_p%3E2726058222%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726058222&rft_id=info:pmid/35500498&rft_els_id=S1361841522000792&rfr_iscdi=true |