ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS

We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2022-08, Vol.517 (1)
Hauptverfasser: Roth, Julien, Upadhyay, Abhitosh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical analysis and applications
container_volume 517
creator Roth, Julien
Upadhyay, Abhitosh
description We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03682396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03682396v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03682396v13</originalsourceid><addsrcrecordid>eNpjYuA0NLA00zWwMDRmYeA0MDAy0jUyMY_gYOAqLs4yMDA0NDU35GSw9_dTcPb3DXB0DlFw9XVycnVxdVEId_X0c3cMCnH1U_CIDHANCg4NcnN0dg1W8PRTCHcMCgAqCQjydwl1DgnmYWBNS8wpTuWF0twMmm6uIc4euhmJOfEFRZm5iUWV8fmJmfEejj7xIDEDYzMLI2NLszJDY1LUAgBuzDee</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Roth, Julien ; Upadhyay, Abhitosh</creator><creatorcontrib>Roth, Julien ; Upadhyay, Abhitosh</creatorcontrib><description>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b &gt; 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Journal of mathematical analysis and applications, 2022-08, Vol.517 (1)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0880-5674 ; 0000-0003-0880-5674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03682396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Julien</creatorcontrib><creatorcontrib>Upadhyay, Abhitosh</creatorcontrib><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><title>Journal of mathematical analysis and applications</title><description>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b &gt; 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NLA00zWwMDRmYeA0MDAy0jUyMY_gYOAqLs4yMDA0NDU35GSw9_dTcPb3DXB0DlFw9XVycnVxdVEId_X0c3cMCnH1U_CIDHANCg4NcnN0dg1W8PRTCHcMCgAqCQjydwl1DgnmYWBNS8wpTuWF0twMmm6uIc4euhmJOfEFRZm5iUWV8fmJmfEejj7xIDEDYzMLI2NLszJDY1LUAgBuzDee</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Roth, Julien</creator><creator>Upadhyay, Abhitosh</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid></search><sort><creationdate>20220822</creationdate><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><author>Roth, Julien ; Upadhyay, Abhitosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03682396v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Julien</creatorcontrib><creatorcontrib>Upadhyay, Abhitosh</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Julien</au><au>Upadhyay, Abhitosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2022-08-22</date><risdate>2022</risdate><volume>517</volume><issue>1</issue><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b &gt; 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</abstract><pub>Elsevier</pub><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-247X
ispartof Journal of mathematical analysis and applications, 2022-08, Vol.517 (1)
issn 0022-247X
1096-0813
language eng
recordid cdi_hal_primary_oai_HAL_hal_03682396v1
source Elsevier ScienceDirect Journals Complete
subjects Differential Geometry
Mathematics
title ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20COMPACT%20EMBBEDED%20WEINGARTEN%20HYPERSURFACES%20IN%20WARPED%20PRODUCTS&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Roth,%20Julien&rft.date=2022-08-22&rft.volume=517&rft.issue=1&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_03682396v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true