ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS
We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedne...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-08, Vol.517 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of mathematical analysis and applications |
container_volume | 517 |
creator | Roth, Julien Upadhyay, Abhitosh |
description | We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space. |
format | Article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03682396v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03682396v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_03682396v13</originalsourceid><addsrcrecordid>eNpjYuA0NLA00zWwMDRmYeA0MDAy0jUyMY_gYOAqLs4yMDA0NDU35GSw9_dTcPb3DXB0DlFw9XVycnVxdVEId_X0c3cMCnH1U_CIDHANCg4NcnN0dg1W8PRTCHcMCgAqCQjydwl1DgnmYWBNS8wpTuWF0twMmm6uIc4euhmJOfEFRZm5iUWV8fmJmfEejj7xIDEDYzMLI2NLszJDY1LUAgBuzDee</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Roth, Julien ; Upadhyay, Abhitosh</creator><creatorcontrib>Roth, Julien ; Upadhyay, Abhitosh</creatorcontrib><description>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</description><identifier>ISSN: 0022-247X</identifier><identifier>EISSN: 1096-0813</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Differential Geometry ; Mathematics</subject><ispartof>Journal of mathematical analysis and applications, 2022-08, Vol.517 (1)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0880-5674 ; 0000-0003-0880-5674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03682396$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Roth, Julien</creatorcontrib><creatorcontrib>Upadhyay, Abhitosh</creatorcontrib><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><title>Journal of mathematical analysis and applications</title><description>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</description><subject>Differential Geometry</subject><subject>Mathematics</subject><issn>0022-247X</issn><issn>1096-0813</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpjYuA0NLA00zWwMDRmYeA0MDAy0jUyMY_gYOAqLs4yMDA0NDU35GSw9_dTcPb3DXB0DlFw9XVycnVxdVEId_X0c3cMCnH1U_CIDHANCg4NcnN0dg1W8PRTCHcMCgAqCQjydwl1DgnmYWBNS8wpTuWF0twMmm6uIc4euhmJOfEFRZm5iUWV8fmJmfEejj7xIDEDYzMLI2NLszJDY1LUAgBuzDee</recordid><startdate>20220822</startdate><enddate>20220822</enddate><creator>Roth, Julien</creator><creator>Upadhyay, Abhitosh</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid></search><sort><creationdate>20220822</creationdate><title>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</title><author>Roth, Julien ; Upadhyay, Abhitosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_03682396v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Differential Geometry</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roth, Julien</creatorcontrib><creatorcontrib>Upadhyay, Abhitosh</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of mathematical analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roth, Julien</au><au>Upadhyay, Abhitosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS</atitle><jtitle>Journal of mathematical analysis and applications</jtitle><date>2022-08-22</date><risdate>2022</risdate><volume>517</volume><issue>1</issue><issn>0022-247X</issn><eissn>1096-0813</eissn><abstract>We show that compact embedded starshaped r-convex hypersurfaces of certain warped products satisfying Hr = aH + b with a 0, b > 0, where H and Hr are respectively the mean curvature and r-th mean curvature is a slice. In the case of space forms, we show that without the assumption of starshapedness, such Weingarten hypersurfaces are geodesic spheres. Finally, we prove that, in the case of space forms, if Hr − aH − b is close to 0 then the hypersurface is close to geodesic sphere for the Hausdorff distance. We also prove an anisotropic version of this stability result in the Euclidean space.</abstract><pub>Elsevier</pub><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><orcidid>https://orcid.org/0000-0003-0880-5674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-247X |
ispartof | Journal of mathematical analysis and applications, 2022-08, Vol.517 (1) |
issn | 0022-247X 1096-0813 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03682396v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Differential Geometry Mathematics |
title | ON COMPACT EMBBEDED WEINGARTEN HYPERSURFACES IN WARPED PRODUCTS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T22%3A12%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20COMPACT%20EMBBEDED%20WEINGARTEN%20HYPERSURFACES%20IN%20WARPED%20PRODUCTS&rft.jtitle=Journal%20of%20mathematical%20analysis%20and%20applications&rft.au=Roth,%20Julien&rft.date=2022-08-22&rft.volume=517&rft.issue=1&rft.issn=0022-247X&rft.eissn=1096-0813&rft_id=info:doi/&rft_dat=%3Chal%3Eoai_HAL_hal_03682396v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |