Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys
The process of crack initiation has been investigated in three widely used titanium alloys with different microstructures and loading conditions. Using low-cycle fatigue tests, a unique crack nucleation mechanism involving strain localization at (0001) twist boundaries has been identified. In order...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2021-10, Vol.219, p.117227, Article 117227 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 117227 |
container_title | Acta materialia |
container_volume | 219 |
creator | Hémery, S. Stinville, J.C. Wang, F. Charpagne, M.A. Emigh, M.G. Pollock, T.M. Valle, V. |
description | The process of crack initiation has been investigated in three widely used titanium alloys with different microstructures and loading conditions. Using low-cycle fatigue tests, a unique crack nucleation mechanism involving strain localization at (0001) twist boundaries has been identified. In order to constitute a potential crack initiation site, the twist boundary must experience a high resolved shear stress and a high normal stress. Crack initiation at these boundaries is most frequently associated with twist angles spanning the 10° - 20° range. Deformation prior to crack initiation at these rare microstructural configurations has been characterized using transmission electron microscopy and high-resolution digital image correlation across large fields of view. The (0001) twist boundaries are preferential locations for early and intense strain localization. Prior to crack nucleation, deformation proceeds via shear along such boundaries where no β layer at the interface was evidenced. The presently discussed crack formation mechanism is believed to be of broad relevance as it is not significantly influenced by microstructural parameters such as the α grain size, the degree of microtexture, the β phase fraction or the surrounding microstructure as well as α and β compositions.
[Display omitted] |
doi_str_mv | 10.1016/j.actamat.2021.117227 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03681156v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359645421006078</els_id><sourcerecordid>S1359645421006078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-9cc45c63bea726c12ae332d1b8fb1129fea2c4b3c40b78ee9e8458275394a00d3</originalsourceid><addsrcrecordid>eNqFkE9LAzEQxYMoWKsfQcjRHnbNJNl_JylFrVDwoB4lzGazmrrdSJIq9dO7ZYtXT_OYeb8H8wi5BJYCg_x6naKOuMGYcsYhBSg4L47IBMpCJFxm4njQIquSXGbylJyFsGYMeCHZhLw-RY-2p53T2NkfjNb1FPuGtoN82xqqPeoP2jq_OdwivWIDPqPx24ZIa7ftG_TWBDrERBuxt9sNxa5zu3BOTlrsgrk4zCl5ubt9XiyT1eP9w2K-SrSQIiaV1jLTuagNFjzXwNEIwRuoy7YG4FVrkGtZCy1ZXZTGVKaUWcmLTFQSGWvElMzG3Hfs1Ke3G_Q75dCq5Xyl9jsm8hIgy79g8GajV3sXgjftHwBM7ftUa3XoU-37VGOfA3czcmZ45Msar4K2ptemsd7oqBpn_0n4BUyfgJc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys</title><source>Elsevier ScienceDirect Journals</source><creator>Hémery, S. ; Stinville, J.C. ; Wang, F. ; Charpagne, M.A. ; Emigh, M.G. ; Pollock, T.M. ; Valle, V.</creator><creatorcontrib>Hémery, S. ; Stinville, J.C. ; Wang, F. ; Charpagne, M.A. ; Emigh, M.G. ; Pollock, T.M. ; Valle, V.</creatorcontrib><description>The process of crack initiation has been investigated in three widely used titanium alloys with different microstructures and loading conditions. Using low-cycle fatigue tests, a unique crack nucleation mechanism involving strain localization at (0001) twist boundaries has been identified. In order to constitute a potential crack initiation site, the twist boundary must experience a high resolved shear stress and a high normal stress. Crack initiation at these boundaries is most frequently associated with twist angles spanning the 10° - 20° range. Deformation prior to crack initiation at these rare microstructural configurations has been characterized using transmission electron microscopy and high-resolution digital image correlation across large fields of view. The (0001) twist boundaries are preferential locations for early and intense strain localization. Prior to crack nucleation, deformation proceeds via shear along such boundaries where no β layer at the interface was evidenced. The presently discussed crack formation mechanism is believed to be of broad relevance as it is not significantly influenced by microstructural parameters such as the α grain size, the degree of microtexture, the β phase fraction or the surrounding microstructure as well as α and β compositions.
[Display omitted]</description><identifier>ISSN: 1359-6454</identifier><identifier>EISSN: 1873-2453</identifier><identifier>DOI: 10.1016/j.actamat.2021.117227</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Engineering Sciences ; fatigue crack initiation ; grain boundary ; Physics ; slip ; strain localization ; Titanium alloys</subject><ispartof>Acta materialia, 2021-10, Vol.219, p.117227, Article 117227</ispartof><rights>2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-9cc45c63bea726c12ae332d1b8fb1129fea2c4b3c40b78ee9e8458275394a00d3</citedby><cites>FETCH-LOGICAL-c343t-9cc45c63bea726c12ae332d1b8fb1129fea2c4b3c40b78ee9e8458275394a00d3</cites><orcidid>0000-0003-4323-6577 ; 0000-0002-4684-3121 ; 0000-0001-7740-4132 ; 0000-0002-3776-6945</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1359645421006078$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03681156$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hémery, S.</creatorcontrib><creatorcontrib>Stinville, J.C.</creatorcontrib><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Charpagne, M.A.</creatorcontrib><creatorcontrib>Emigh, M.G.</creatorcontrib><creatorcontrib>Pollock, T.M.</creatorcontrib><creatorcontrib>Valle, V.</creatorcontrib><title>Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys</title><title>Acta materialia</title><description>The process of crack initiation has been investigated in three widely used titanium alloys with different microstructures and loading conditions. Using low-cycle fatigue tests, a unique crack nucleation mechanism involving strain localization at (0001) twist boundaries has been identified. In order to constitute a potential crack initiation site, the twist boundary must experience a high resolved shear stress and a high normal stress. Crack initiation at these boundaries is most frequently associated with twist angles spanning the 10° - 20° range. Deformation prior to crack initiation at these rare microstructural configurations has been characterized using transmission electron microscopy and high-resolution digital image correlation across large fields of view. The (0001) twist boundaries are preferential locations for early and intense strain localization. Prior to crack nucleation, deformation proceeds via shear along such boundaries where no β layer at the interface was evidenced. The presently discussed crack formation mechanism is believed to be of broad relevance as it is not significantly influenced by microstructural parameters such as the α grain size, the degree of microtexture, the β phase fraction or the surrounding microstructure as well as α and β compositions.
[Display omitted]</description><subject>Engineering Sciences</subject><subject>fatigue crack initiation</subject><subject>grain boundary</subject><subject>Physics</subject><subject>slip</subject><subject>strain localization</subject><subject>Titanium alloys</subject><issn>1359-6454</issn><issn>1873-2453</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LAzEQxYMoWKsfQcjRHnbNJNl_JylFrVDwoB4lzGazmrrdSJIq9dO7ZYtXT_OYeb8H8wi5BJYCg_x6naKOuMGYcsYhBSg4L47IBMpCJFxm4njQIquSXGbylJyFsGYMeCHZhLw-RY-2p53T2NkfjNb1FPuGtoN82xqqPeoP2jq_OdwivWIDPqPx24ZIa7ftG_TWBDrERBuxt9sNxa5zu3BOTlrsgrk4zCl5ubt9XiyT1eP9w2K-SrSQIiaV1jLTuagNFjzXwNEIwRuoy7YG4FVrkGtZCy1ZXZTGVKaUWcmLTFQSGWvElMzG3Hfs1Ke3G_Q75dCq5Xyl9jsm8hIgy79g8GajV3sXgjftHwBM7ftUa3XoU-37VGOfA3czcmZ45Msar4K2ptemsd7oqBpn_0n4BUyfgJc</recordid><startdate>20211015</startdate><enddate>20211015</enddate><creator>Hémery, S.</creator><creator>Stinville, J.C.</creator><creator>Wang, F.</creator><creator>Charpagne, M.A.</creator><creator>Emigh, M.G.</creator><creator>Pollock, T.M.</creator><creator>Valle, V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4323-6577</orcidid><orcidid>https://orcid.org/0000-0002-4684-3121</orcidid><orcidid>https://orcid.org/0000-0001-7740-4132</orcidid><orcidid>https://orcid.org/0000-0002-3776-6945</orcidid></search><sort><creationdate>20211015</creationdate><title>Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys</title><author>Hémery, S. ; Stinville, J.C. ; Wang, F. ; Charpagne, M.A. ; Emigh, M.G. ; Pollock, T.M. ; Valle, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-9cc45c63bea726c12ae332d1b8fb1129fea2c4b3c40b78ee9e8458275394a00d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Engineering Sciences</topic><topic>fatigue crack initiation</topic><topic>grain boundary</topic><topic>Physics</topic><topic>slip</topic><topic>strain localization</topic><topic>Titanium alloys</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hémery, S.</creatorcontrib><creatorcontrib>Stinville, J.C.</creatorcontrib><creatorcontrib>Wang, F.</creatorcontrib><creatorcontrib>Charpagne, M.A.</creatorcontrib><creatorcontrib>Emigh, M.G.</creatorcontrib><creatorcontrib>Pollock, T.M.</creatorcontrib><creatorcontrib>Valle, V.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Acta materialia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hémery, S.</au><au>Stinville, J.C.</au><au>Wang, F.</au><au>Charpagne, M.A.</au><au>Emigh, M.G.</au><au>Pollock, T.M.</au><au>Valle, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys</atitle><jtitle>Acta materialia</jtitle><date>2021-10-15</date><risdate>2021</risdate><volume>219</volume><spage>117227</spage><pages>117227-</pages><artnum>117227</artnum><issn>1359-6454</issn><eissn>1873-2453</eissn><abstract>The process of crack initiation has been investigated in three widely used titanium alloys with different microstructures and loading conditions. Using low-cycle fatigue tests, a unique crack nucleation mechanism involving strain localization at (0001) twist boundaries has been identified. In order to constitute a potential crack initiation site, the twist boundary must experience a high resolved shear stress and a high normal stress. Crack initiation at these boundaries is most frequently associated with twist angles spanning the 10° - 20° range. Deformation prior to crack initiation at these rare microstructural configurations has been characterized using transmission electron microscopy and high-resolution digital image correlation across large fields of view. The (0001) twist boundaries are preferential locations for early and intense strain localization. Prior to crack nucleation, deformation proceeds via shear along such boundaries where no β layer at the interface was evidenced. The presently discussed crack formation mechanism is believed to be of broad relevance as it is not significantly influenced by microstructural parameters such as the α grain size, the degree of microtexture, the β phase fraction or the surrounding microstructure as well as α and β compositions.
[Display omitted]</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.actamat.2021.117227</doi><orcidid>https://orcid.org/0000-0003-4323-6577</orcidid><orcidid>https://orcid.org/0000-0002-4684-3121</orcidid><orcidid>https://orcid.org/0000-0001-7740-4132</orcidid><orcidid>https://orcid.org/0000-0002-3776-6945</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-6454 |
ispartof | Acta materialia, 2021-10, Vol.219, p.117227, Article 117227 |
issn | 1359-6454 1873-2453 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03681156v1 |
source | Elsevier ScienceDirect Journals |
subjects | Engineering Sciences fatigue crack initiation grain boundary Physics slip strain localization Titanium alloys |
title | Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A49%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strain%20localization%20and%20fatigue%20crack%20formation%20at%20(0001)%20twist%20boundaries%20in%20titanium%20alloys&rft.jtitle=Acta%20materialia&rft.au=H%C3%A9mery,%20S.&rft.date=2021-10-15&rft.volume=219&rft.spage=117227&rft.pages=117227-&rft.artnum=117227&rft.issn=1359-6454&rft.eissn=1873-2453&rft_id=info:doi/10.1016/j.actamat.2021.117227&rft_dat=%3Celsevier_hal_p%3ES1359645421006078%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359645421006078&rfr_iscdi=true |