Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection
This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associ...
Gespeichert in:
Veröffentlicht in: | Discrete event dynamic systems 2022-03, Vol.32 (1), p.65-88 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Discrete event dynamic systems |
container_volume | 32 |
creator | Lefebvre, Dimitri Seatzu, Carla Hadjicostis, Christoforos N. Giua, Alessandro |
description | This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem. |
doi_str_mv | 10.1007/s10626-021-00348-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03678976v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2639022498</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-c1fee28278eef26ac8cac57acdbe27e1d9165f9d98fa1975dc78e2d185db42eb3</originalsourceid><addsrcrecordid>eNp9kT9PwzAQxS0EEqXwBZgsMTEEbOeP47GqgCIVwQCz5dgXmjaNg-2A-u1xGwQb053Ov_d054fQJSU3lBB-6ykpWJEQRhNC0qxMdkdoQnOeJjwX2TGaEMGypOAkPUVn3q9JpATJJ6h7cbZSVdM2PjQa-6ACYIj9VoXGdri2DreqghYM1rYLTTfYweP4DvhJuY39xFtroPX4qwkrrPq-bfRBGiGLVQhKb7CBAHo_PEcntWo9XPzUKXq7v3udL5Ll88PjfLZMdCp4SDStAVjJeAlQs0LpUiudc6VNBYwDNYIWeS2MKGtFBc-NjiQztMxNlTGo0im6Hn1XqpW9i9e4nbSqkYvZUu5nJC14KXjxSSN7NbK9sx9DvF2u7eC6uJ5kRfwlxjJRRoqNlHbWewf1ry0lcp-BHDOQMQN5yEDuoigdRT7C3Tu4P-t_VN_Q040V</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639022498</pqid></control><display><type>article</type><title>Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection</title><source>SpringerNature Journals</source><creator>Lefebvre, Dimitri ; Seatzu, Carla ; Hadjicostis, Christoforos N. ; Giua, Alessandro</creator><creatorcontrib>Lefebvre, Dimitri ; Seatzu, Carla ; Hadjicostis, Christoforos N. ; Giua, Alessandro</creatorcontrib><description>This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem.</description><identifier>ISSN: 0924-6703</identifier><identifier>EISSN: 1573-7594</identifier><identifier>DOI: 10.1007/s10626-021-00348-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Automatic Control Engineering ; Computer Science ; Control ; Convex and Discrete Geometry ; Cybersecurity ; Electrical Engineering ; Machines ; Manufacturing ; Markov chains ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Processes ; State estimation ; Systems Theory ; Topical Collection on Cybersecurity</subject><ispartof>Discrete event dynamic systems, 2022-03, Vol.32 (1), p.65-88</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-c1fee28278eef26ac8cac57acdbe27e1d9165f9d98fa1975dc78e2d185db42eb3</citedby><cites>FETCH-LOGICAL-c397t-c1fee28278eef26ac8cac57acdbe27e1d9165f9d98fa1975dc78e2d185db42eb3</cites><orcidid>0000-0001-7060-756X ; 0000-0002-1706-708X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10626-021-00348-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10626-021-00348-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,315,781,785,886,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-03678976$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Seatzu, Carla</creatorcontrib><creatorcontrib>Hadjicostis, Christoforos N.</creatorcontrib><creatorcontrib>Giua, Alessandro</creatorcontrib><title>Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection</title><title>Discrete event dynamic systems</title><addtitle>Discrete Event Dyn Syst</addtitle><description>This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem.</description><subject>Automatic Control Engineering</subject><subject>Computer Science</subject><subject>Control</subject><subject>Convex and Discrete Geometry</subject><subject>Cybersecurity</subject><subject>Electrical Engineering</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Markov chains</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Processes</subject><subject>State estimation</subject><subject>Systems Theory</subject><subject>Topical Collection on Cybersecurity</subject><issn>0924-6703</issn><issn>1573-7594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kT9PwzAQxS0EEqXwBZgsMTEEbOeP47GqgCIVwQCz5dgXmjaNg-2A-u1xGwQb053Ov_d054fQJSU3lBB-6ykpWJEQRhNC0qxMdkdoQnOeJjwX2TGaEMGypOAkPUVn3q9JpATJJ6h7cbZSVdM2PjQa-6ACYIj9VoXGdri2DreqghYM1rYLTTfYweP4DvhJuY39xFtroPX4qwkrrPq-bfRBGiGLVQhKb7CBAHo_PEcntWo9XPzUKXq7v3udL5Ll88PjfLZMdCp4SDStAVjJeAlQs0LpUiudc6VNBYwDNYIWeS2MKGtFBc-NjiQztMxNlTGo0im6Hn1XqpW9i9e4nbSqkYvZUu5nJC14KXjxSSN7NbK9sx9DvF2u7eC6uJ5kRfwlxjJRRoqNlHbWewf1ry0lcp-BHDOQMQN5yEDuoigdRT7C3Tu4P-t_VN_Q040V</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Lefebvre, Dimitri</creator><creator>Seatzu, Carla</creator><creator>Hadjicostis, Christoforos N.</creator><creator>Giua, Alessandro</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7060-756X</orcidid><orcidid>https://orcid.org/0000-0002-1706-708X</orcidid></search><sort><creationdate>20220301</creationdate><title>Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection</title><author>Lefebvre, Dimitri ; Seatzu, Carla ; Hadjicostis, Christoforos N. ; Giua, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-c1fee28278eef26ac8cac57acdbe27e1d9165f9d98fa1975dc78e2d185db42eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automatic Control Engineering</topic><topic>Computer Science</topic><topic>Control</topic><topic>Convex and Discrete Geometry</topic><topic>Cybersecurity</topic><topic>Electrical Engineering</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Markov chains</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Processes</topic><topic>State estimation</topic><topic>Systems Theory</topic><topic>Topical Collection on Cybersecurity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lefebvre, Dimitri</creatorcontrib><creatorcontrib>Seatzu, Carla</creatorcontrib><creatorcontrib>Hadjicostis, Christoforos N.</creatorcontrib><creatorcontrib>Giua, Alessandro</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Discrete event dynamic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lefebvre, Dimitri</au><au>Seatzu, Carla</au><au>Hadjicostis, Christoforos N.</au><au>Giua, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection</atitle><jtitle>Discrete event dynamic systems</jtitle><stitle>Discrete Event Dyn Syst</stitle><date>2022-03-01</date><risdate>2022</risdate><volume>32</volume><issue>1</issue><spage>65</spage><epage>88</epage><pages>65-88</pages><issn>0924-6703</issn><eissn>1573-7594</eissn><abstract>This paper is about state estimation in a timed probabilistic setting. The main contribution is a general procedure to design an observer for computing the probabilities of the states for labeled continuous time Markov models as functions of time, based on a sequence of observations and their associated time stamps that have been collected thus far. Two notions of state consistency with respect to such a timed observation sequence are introduced and related necessary and sufficient conditions are derived. The method is then applied to the detection of cyber-attacks. The plant and the possible attacks are described in terms of a labeled continuous time Markov model that includes both observable and unobservable events, and where each attack corresponds to a particular subset of states. Consequently, attack detection is reformulated as a state estimation problem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10626-021-00348-y</doi><tpages>24</tpages><orcidid>https://orcid.org/0000-0001-7060-756X</orcidid><orcidid>https://orcid.org/0000-0002-1706-708X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0924-6703 |
ispartof | Discrete event dynamic systems, 2022-03, Vol.32 (1), p.65-88 |
issn | 0924-6703 1573-7594 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03678976v1 |
source | SpringerNature Journals |
subjects | Automatic Control Engineering Computer Science Control Convex and Discrete Geometry Cybersecurity Electrical Engineering Machines Manufacturing Markov chains Mathematics Mathematics and Statistics Operations Research/Decision Theory Processes State estimation Systems Theory Topical Collection on Cybersecurity |
title | Probabilistic state estimation for labeled continuous time Markov models with applications to attack detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T18%3A16%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probabilistic%20state%20estimation%20for%20labeled%20continuous%20time%20Markov%20models%20with%20applications%20to%20attack%20detection&rft.jtitle=Discrete%20event%20dynamic%20systems&rft.au=Lefebvre,%20Dimitri&rft.date=2022-03-01&rft.volume=32&rft.issue=1&rft.spage=65&rft.epage=88&rft.pages=65-88&rft.issn=0924-6703&rft.eissn=1573-7594&rft_id=info:doi/10.1007/s10626-021-00348-y&rft_dat=%3Cproquest_hal_p%3E2639022498%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639022498&rft_id=info:pmid/&rfr_iscdi=true |