The location and vegetation physiognomy of ecological infrastructures determine bat activity in Mediterranean floodplain landscapes

Ecological infrastructures (EI), defined as natural or semi-natural structural elements, are important to support biodiversity and could play a crucial role in counteracting the well-known impacts of intensive agriculture. Yet, the importance of EI remains largely unexplored in Mediterranean agricul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agriculture, ecosystems & environment ecosystems & environment, 2022-07, Vol.332, p.107929, Article 107929
Hauptverfasser: Froidevaux, Jérémy S.P., Duarte, Gonçalo, Fonseca, André, Zina, Vera, Conde, Sofia, Ferreira, Maria Teresa, Fernandes, Maria Rosário
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ecological infrastructures (EI), defined as natural or semi-natural structural elements, are important to support biodiversity and could play a crucial role in counteracting the well-known impacts of intensive agriculture. Yet, the importance of EI remains largely unexplored in Mediterranean agricultural landscapes and for species providing essential ecosystem services such as bats. Here, we evaluated the role of different EI types – in terms of location (riparian vs terrestrial) and vegetation physiognomy (woody vs non-woody) – in shaping bat guild activity in crop fields located in the floodplains of the Iberian Peninsula. We recorded 60,732 bat sequences in 96 crop fields and characterised 106 EI patches via an adaptation of the Biodiversity Potential Index (BPI). We found that the activity of mid-range echolocators (MRE) and long-range echolocators (LRE) was twofold higher when the nearest EI patch was riparian (i.e., contiguous to a watercourse) than when it was terrestrial. When assessing changes in bat activity in crop fields in relation to a gradient distance from EI types, our results revealed both distinct and similar effects of the location and vegetation physiognomy of the EI on bat guilds. For instance, while only the LRE guild positively responded to the proximity of woody EI, both MRE and LRE showed a marked increase of activity when increasing distances to non-woody EI, thus suggesting low bat activity levels near these features. Our habitat quality assessment also revealed that woody EI and riparian EI had higher biodiversity potential and related habitat quality, thus contributing to our understanding of bat responses to EI type in crop fields. As riparian areas are rarely targeted in biodiversity-friendly measures in farmland, we strongly recommend including riparian EI (especially the woody type) in conservation planning as they are crucial for both biodiversity conservation and ecosystem functioning. •Ecological infrastructure (EI) location and vegetation physiognomy determine bat activity in crop fields.•Bats were more active in crop fields located along riparian EI.•Bat activity was negatively associated with proximity to non-woody EI.•Woody EI and riparian EI have higher biodiversity potential and related habitat quality.•Woody, riparian EI should be prioritised in biodiversity conservation planning.
ISSN:0167-8809
1873-2305
0167-8809
DOI:10.1016/j.agee.2022.107929