Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems

In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automatica (Oxford) 2023-09, Vol.155, p.111151, Article 111151
Hauptverfasser: Chitour, Yacine, Haidar, Ihab, Mason, Paolo, Sigalotti, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 111151
container_title Automatica (Oxford)
container_volume 155
creator Chitour, Yacine
Haidar, Ihab
Mason, Paolo
Sigalotti, Mario
description In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.
doi_str_mv 10.1016/j.automatica.2023.111151
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03668881v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109823003114</els_id><sourcerecordid>S0005109823003114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqXwH7wypNhx47hjqYAiVWKhs-U4Z-oqiSPbaZt_j6siGLnlzqf3ns4fQpiSGSWUP-1naoiuVdFqNctJzmY0VUGv0ISKkmW5YPwaTQghRUbJQtyiuxD26TmnIp8gu-178Fh1NW7cMU2VG7o6YOM8jjvArTrZVjV4M6p-6NwBw6l3HXQRO4OD7b6GRvlmxCkkDr6CFGM7UB6Ho416lwQ4jCFCG-7RjVFNgIefPkXb15fP1TrbfLy9r5abTM9JHrOirgpR14SCLouCcGFKoZUAUzNeUZjTuQDCTQXULJhmlTKECWY0r0pOckXYFD1ecneqkb1P1_tROmXlermR5x1hnAsh6IEmrbhotXcheDC_BkrkGa_cyz-88oxXXvAm6_PFCukvBwteBm2h01BbDzrK2tn_Q74BYWGLHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</creator><creatorcontrib>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</creatorcontrib><description>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2023.111151</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Differential inclusions ; Dynamical Systems ; Engineering Sciences ; Exponential stability ; Mathematics ; Maximal Lyapunov exponent ; Singular perturbation ; Switching systems</subject><ispartof>Automatica (Oxford), 2023-09, Vol.155, p.111151, Article 111151</ispartof><rights>2023 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</citedby><cites>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</cites><orcidid>0000-0003-4790-6777 ; 0000-0002-2583-9991 ; 0000-0002-2308-7909 ; 0000-0002-3214-5824 ; 0000-0002-9013-1076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2023.111151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03668881$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Haidar, Ihab</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><creatorcontrib>Sigalotti, Mario</creatorcontrib><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><title>Automatica (Oxford)</title><description>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</description><subject>Automatic</subject><subject>Differential inclusions</subject><subject>Dynamical Systems</subject><subject>Engineering Sciences</subject><subject>Exponential stability</subject><subject>Mathematics</subject><subject>Maximal Lyapunov exponent</subject><subject>Singular perturbation</subject><subject>Switching systems</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqXwH7wypNhx47hjqYAiVWKhs-U4Z-oqiSPbaZt_j6siGLnlzqf3ns4fQpiSGSWUP-1naoiuVdFqNctJzmY0VUGv0ISKkmW5YPwaTQghRUbJQtyiuxD26TmnIp8gu-178Fh1NW7cMU2VG7o6YOM8jjvArTrZVjV4M6p-6NwBw6l3HXQRO4OD7b6GRvlmxCkkDr6CFGM7UB6Ho416lwQ4jCFCG-7RjVFNgIefPkXb15fP1TrbfLy9r5abTM9JHrOirgpR14SCLouCcGFKoZUAUzNeUZjTuQDCTQXULJhmlTKECWY0r0pOckXYFD1ecneqkb1P1_tROmXlermR5x1hnAsh6IEmrbhotXcheDC_BkrkGa_cyz-88oxXXvAm6_PFCukvBwteBm2h01BbDzrK2tn_Q74BYWGLHA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chitour, Yacine</creator><creator>Haidar, Ihab</creator><creator>Mason, Paolo</creator><creator>Sigalotti, Mario</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid><orcidid>https://orcid.org/0000-0002-2308-7909</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid><orcidid>https://orcid.org/0000-0002-9013-1076</orcidid></search><sort><creationdate>20230901</creationdate><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><author>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic</topic><topic>Differential inclusions</topic><topic>Dynamical Systems</topic><topic>Engineering Sciences</topic><topic>Exponential stability</topic><topic>Mathematics</topic><topic>Maximal Lyapunov exponent</topic><topic>Singular perturbation</topic><topic>Switching systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Haidar, Ihab</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><creatorcontrib>Sigalotti, Mario</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chitour, Yacine</au><au>Haidar, Ihab</au><au>Mason, Paolo</au><au>Sigalotti, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>155</volume><spage>111151</spage><pages>111151-</pages><artnum>111151</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2023.111151</doi><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid><orcidid>https://orcid.org/0000-0002-2308-7909</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid><orcidid>https://orcid.org/0000-0002-9013-1076</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0005-1098
ispartof Automatica (Oxford), 2023-09, Vol.155, p.111151, Article 111151
issn 0005-1098
1873-2836
language eng
recordid cdi_hal_primary_oai_HAL_hal_03668881v1
source Access via ScienceDirect (Elsevier)
subjects Automatic
Differential inclusions
Dynamical Systems
Engineering Sciences
Exponential stability
Mathematics
Maximal Lyapunov exponent
Singular perturbation
Switching systems
title Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20and%20lower%20bounds%20for%20the%20maximal%20Lyapunov%20exponent%20of%20singularly%20perturbed%20linear%20switching%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Chitour,%20Yacine&rft.date=2023-09-01&rft.volume=155&rft.spage=111151&rft.pages=111151-&rft.artnum=111151&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2023.111151&rft_dat=%3Celsevier_hal_p%3ES0005109823003114%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109823003114&rfr_iscdi=true