Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems
In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular p...
Gespeichert in:
Veröffentlicht in: | Automatica (Oxford) 2023-09, Vol.155, p.111151, Article 111151 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 111151 |
container_title | Automatica (Oxford) |
container_volume | 155 |
creator | Chitour, Yacine Haidar, Ihab Mason, Paolo Sigalotti, Mario |
description | In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero. |
doi_str_mv | 10.1016/j.automatica.2023.111151 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03668881v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0005109823003114</els_id><sourcerecordid>S0005109823003114</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</originalsourceid><addsrcrecordid>eNqFkDFPwzAQhS0EEqXwH7wypNhx47hjqYAiVWKhs-U4Z-oqiSPbaZt_j6siGLnlzqf3ns4fQpiSGSWUP-1naoiuVdFqNctJzmY0VUGv0ISKkmW5YPwaTQghRUbJQtyiuxD26TmnIp8gu-178Fh1NW7cMU2VG7o6YOM8jjvArTrZVjV4M6p-6NwBw6l3HXQRO4OD7b6GRvlmxCkkDr6CFGM7UB6Ho416lwQ4jCFCG-7RjVFNgIefPkXb15fP1TrbfLy9r5abTM9JHrOirgpR14SCLouCcGFKoZUAUzNeUZjTuQDCTQXULJhmlTKECWY0r0pOckXYFD1ecneqkb1P1_tROmXlermR5x1hnAsh6IEmrbhotXcheDC_BkrkGa_cyz-88oxXXvAm6_PFCukvBwteBm2h01BbDzrK2tn_Q74BYWGLHA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><source>Access via ScienceDirect (Elsevier)</source><creator>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</creator><creatorcontrib>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</creatorcontrib><description>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</description><identifier>ISSN: 0005-1098</identifier><identifier>EISSN: 1873-2836</identifier><identifier>DOI: 10.1016/j.automatica.2023.111151</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Automatic ; Differential inclusions ; Dynamical Systems ; Engineering Sciences ; Exponential stability ; Mathematics ; Maximal Lyapunov exponent ; Singular perturbation ; Switching systems</subject><ispartof>Automatica (Oxford), 2023-09, Vol.155, p.111151, Article 111151</ispartof><rights>2023 Elsevier Ltd</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</citedby><cites>FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</cites><orcidid>0000-0003-4790-6777 ; 0000-0002-2583-9991 ; 0000-0002-2308-7909 ; 0000-0002-3214-5824 ; 0000-0002-9013-1076</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.automatica.2023.111151$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03668881$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Haidar, Ihab</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><creatorcontrib>Sigalotti, Mario</creatorcontrib><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><title>Automatica (Oxford)</title><description>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</description><subject>Automatic</subject><subject>Differential inclusions</subject><subject>Dynamical Systems</subject><subject>Engineering Sciences</subject><subject>Exponential stability</subject><subject>Mathematics</subject><subject>Maximal Lyapunov exponent</subject><subject>Singular perturbation</subject><subject>Switching systems</subject><issn>0005-1098</issn><issn>1873-2836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkDFPwzAQhS0EEqXwH7wypNhx47hjqYAiVWKhs-U4Z-oqiSPbaZt_j6siGLnlzqf3ns4fQpiSGSWUP-1naoiuVdFqNctJzmY0VUGv0ISKkmW5YPwaTQghRUbJQtyiuxD26TmnIp8gu-178Fh1NW7cMU2VG7o6YOM8jjvArTrZVjV4M6p-6NwBw6l3HXQRO4OD7b6GRvlmxCkkDr6CFGM7UB6Ho416lwQ4jCFCG-7RjVFNgIefPkXb15fP1TrbfLy9r5abTM9JHrOirgpR14SCLouCcGFKoZUAUzNeUZjTuQDCTQXULJhmlTKECWY0r0pOckXYFD1ecneqkb1P1_tROmXlermR5x1hnAsh6IEmrbhotXcheDC_BkrkGa_cyz-88oxXXvAm6_PFCukvBwteBm2h01BbDzrK2tn_Q74BYWGLHA</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chitour, Yacine</creator><creator>Haidar, Ihab</creator><creator>Mason, Paolo</creator><creator>Sigalotti, Mario</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid><orcidid>https://orcid.org/0000-0002-2308-7909</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid><orcidid>https://orcid.org/0000-0002-9013-1076</orcidid></search><sort><creationdate>20230901</creationdate><title>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</title><author>Chitour, Yacine ; Haidar, Ihab ; Mason, Paolo ; Sigalotti, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-5db58dd01ec755068f78ca8efd36b1e4148e06fbe1f93c3baf0383fc6b7602a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automatic</topic><topic>Differential inclusions</topic><topic>Dynamical Systems</topic><topic>Engineering Sciences</topic><topic>Exponential stability</topic><topic>Mathematics</topic><topic>Maximal Lyapunov exponent</topic><topic>Singular perturbation</topic><topic>Switching systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chitour, Yacine</creatorcontrib><creatorcontrib>Haidar, Ihab</creatorcontrib><creatorcontrib>Mason, Paolo</creatorcontrib><creatorcontrib>Sigalotti, Mario</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Automatica (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chitour, Yacine</au><au>Haidar, Ihab</au><au>Mason, Paolo</au><au>Sigalotti, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems</atitle><jtitle>Automatica (Oxford)</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>155</volume><spage>111151</spage><pages>111151-</pages><artnum>111151</artnum><issn>0005-1098</issn><eissn>1873-2836</eissn><abstract>In this paper we consider the problem of determining the stability properties, and in particular assessing the exponential stability, of a singularly perturbed linear switching system. One of the challenges of this problem arises from the intricate interplay between the small parameter of singular perturbation and the rate of switching as both tend to zero. Our approach consists in characterizing suitable auxiliary linear systems that provide lower and upper bounds for the asymptotics of the maximal Lyapunov exponent of the linear switching system as the parameter of the singular perturbation tends to zero.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.automatica.2023.111151</doi><orcidid>https://orcid.org/0000-0003-4790-6777</orcidid><orcidid>https://orcid.org/0000-0002-2583-9991</orcidid><orcidid>https://orcid.org/0000-0002-2308-7909</orcidid><orcidid>https://orcid.org/0000-0002-3214-5824</orcidid><orcidid>https://orcid.org/0000-0002-9013-1076</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1098 |
ispartof | Automatica (Oxford), 2023-09, Vol.155, p.111151, Article 111151 |
issn | 0005-1098 1873-2836 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03668881v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | Automatic Differential inclusions Dynamical Systems Engineering Sciences Exponential stability Mathematics Maximal Lyapunov exponent Singular perturbation Switching systems |
title | Upper and lower bounds for the maximal Lyapunov exponent of singularly perturbed linear switching systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T17%3A39%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20and%20lower%20bounds%20for%20the%20maximal%20Lyapunov%20exponent%20of%20singularly%20perturbed%20linear%20switching%20systems&rft.jtitle=Automatica%20(Oxford)&rft.au=Chitour,%20Yacine&rft.date=2023-09-01&rft.volume=155&rft.spage=111151&rft.pages=111151-&rft.artnum=111151&rft.issn=0005-1098&rft.eissn=1873-2836&rft_id=info:doi/10.1016/j.automatica.2023.111151&rft_dat=%3Celsevier_hal_p%3ES0005109823003114%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0005109823003114&rfr_iscdi=true |