3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications
We describe a new development for a full 3D-printed-force actuator based on an advanced electroactive polymer (EAP) dedicated to large and live optical mirror applications, i.e., Live-Mirror Project (https://www.planets.life/live-mirror). The thin-film casting method was used to additively manufactu...
Gespeichert in:
Veröffentlicht in: | Additive manufacturing 2021-11, Vol.47, p.102199, Article 102199 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 102199 |
container_title | Additive manufacturing |
container_volume | 47 |
creator | Thetpraphi, Kritsadi Kanlayakan, Waroot Chaipo, Suphita Moretto, Gil Kuhn, Jeff Audigier, David Le, Minh Quyen Cottinet, Pierre-Jean Petit, Lionel Capsal, Jean-Fabien |
description | We describe a new development for a full 3D-printed-force actuator based on an advanced electroactive polymer (EAP) dedicated to large and live optical mirror applications, i.e., Live-Mirror Project (https://www.planets.life/live-mirror). The thin-film casting method was used to additively manufacture actuators, and we developed an integrating 3D printing technology to the EAP force-actuator production. Our 3D-printed actuator consists of the plasticized terpolymer layer (polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene (PVDF-TrFE-CTFE) doped with diisononyl phthalate (DINP) plasticizer) sandwiched between two electrodes layers made of conductive terpolymer carbon black (CB) composite. The conductive CB layers were developed here to have a high electrical conductivity that can be used under significant voltage. We also made compatible blends with an actuator layer based on DINP polymer. Several fully 3D-printed EAP proof-of-concept actuator configurations were printed on a two-millimeters thick flat glass, i.e., an optical mirror surface. Its electromechanical performance was analyzed as a function of actuator volume, layer number, and electrical field intensity. |
doi_str_mv | 10.1016/j.addma.2021.102199 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03662250v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214860421003602</els_id><sourcerecordid>S2214860421003602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a41428a06a7521f157e011053cfb2c2ac96351593d40151db5d8f0ae1ad131d63</originalsourceid><addsrcrecordid>eNp9kM1LAzEQxYMoWGr_Ai-5etiaSfbz4KHUjwoFL3oO02S2TdndLNm10P_etBWPnmbm8d7A-zF2D2IOAvLH_RytbXEuhYSoSKiqKzaREtKkKEFc_-5lLtJbNhuGvRACMlVUpZywWj0nfXDdSJZTQ2YMHs3oDsR73xxbCrz2wVASxW8c_fnkDYYtcews37ntjveBjBuI-350BhveuhCiC_u-iffofDfcsZsam4Fmv3PKvl5fPperZP3x9r5crBOjSjkmmEIqSxQ5FpmEGrKCBIDIlKk30kg0Va4yyCpl01gB7CazZS2QAC0osLmasofL3x02OvZqMRy1R6dXi7U-aULluZSZOED0qovXBD8Mgeq_AAh9Iqv3-kxWn8jqC9mYerqkKNY4OAp6MI46Q9ZFDKO23v2b_wGs_IJB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications</title><source>Alma/SFX Local Collection</source><creator>Thetpraphi, Kritsadi ; Kanlayakan, Waroot ; Chaipo, Suphita ; Moretto, Gil ; Kuhn, Jeff ; Audigier, David ; Le, Minh Quyen ; Cottinet, Pierre-Jean ; Petit, Lionel ; Capsal, Jean-Fabien</creator><creatorcontrib>Thetpraphi, Kritsadi ; Kanlayakan, Waroot ; Chaipo, Suphita ; Moretto, Gil ; Kuhn, Jeff ; Audigier, David ; Le, Minh Quyen ; Cottinet, Pierre-Jean ; Petit, Lionel ; Capsal, Jean-Fabien</creatorcontrib><description>We describe a new development for a full 3D-printed-force actuator based on an advanced electroactive polymer (EAP) dedicated to large and live optical mirror applications, i.e., Live-Mirror Project (https://www.planets.life/live-mirror). The thin-film casting method was used to additively manufacture actuators, and we developed an integrating 3D printing technology to the EAP force-actuator production. Our 3D-printed actuator consists of the plasticized terpolymer layer (polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene (PVDF-TrFE-CTFE) doped with diisononyl phthalate (DINP) plasticizer) sandwiched between two electrodes layers made of conductive terpolymer carbon black (CB) composite. The conductive CB layers were developed here to have a high electrical conductivity that can be used under significant voltage. We also made compatible blends with an actuator layer based on DINP polymer. Several fully 3D-printed EAP proof-of-concept actuator configurations were printed on a two-millimeters thick flat glass, i.e., an optical mirror surface. Its electromechanical performance was analyzed as a function of actuator volume, layer number, and electrical field intensity.</description><identifier>ISSN: 2214-8604</identifier><identifier>EISSN: 2214-7810</identifier><identifier>DOI: 10.1016/j.addma.2021.102199</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>3D printing ; Active control of glass deformation ; Active optical mirror ; EAP force-actuator ; Electroactive doped polymer ; Engineering Sciences ; Flexible printed materials ; Optimization of printed electrodes</subject><ispartof>Additive manufacturing, 2021-11, Vol.47, p.102199, Article 102199</ispartof><rights>2021 Elsevier B.V.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a41428a06a7521f157e011053cfb2c2ac96351593d40151db5d8f0ae1ad131d63</citedby><cites>FETCH-LOGICAL-c382t-a41428a06a7521f157e011053cfb2c2ac96351593d40151db5d8f0ae1ad131d63</cites><orcidid>0000-0003-2904-8422 ; 0000-0001-5607-1578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03662250$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thetpraphi, Kritsadi</creatorcontrib><creatorcontrib>Kanlayakan, Waroot</creatorcontrib><creatorcontrib>Chaipo, Suphita</creatorcontrib><creatorcontrib>Moretto, Gil</creatorcontrib><creatorcontrib>Kuhn, Jeff</creatorcontrib><creatorcontrib>Audigier, David</creatorcontrib><creatorcontrib>Le, Minh Quyen</creatorcontrib><creatorcontrib>Cottinet, Pierre-Jean</creatorcontrib><creatorcontrib>Petit, Lionel</creatorcontrib><creatorcontrib>Capsal, Jean-Fabien</creatorcontrib><title>3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications</title><title>Additive manufacturing</title><description>We describe a new development for a full 3D-printed-force actuator based on an advanced electroactive polymer (EAP) dedicated to large and live optical mirror applications, i.e., Live-Mirror Project (https://www.planets.life/live-mirror). The thin-film casting method was used to additively manufacture actuators, and we developed an integrating 3D printing technology to the EAP force-actuator production. Our 3D-printed actuator consists of the plasticized terpolymer layer (polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene (PVDF-TrFE-CTFE) doped with diisononyl phthalate (DINP) plasticizer) sandwiched between two electrodes layers made of conductive terpolymer carbon black (CB) composite. The conductive CB layers were developed here to have a high electrical conductivity that can be used under significant voltage. We also made compatible blends with an actuator layer based on DINP polymer. Several fully 3D-printed EAP proof-of-concept actuator configurations were printed on a two-millimeters thick flat glass, i.e., an optical mirror surface. Its electromechanical performance was analyzed as a function of actuator volume, layer number, and electrical field intensity.</description><subject>3D printing</subject><subject>Active control of glass deformation</subject><subject>Active optical mirror</subject><subject>EAP force-actuator</subject><subject>Electroactive doped polymer</subject><subject>Engineering Sciences</subject><subject>Flexible printed materials</subject><subject>Optimization of printed electrodes</subject><issn>2214-8604</issn><issn>2214-7810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LAzEQxYMoWGr_Ai-5etiaSfbz4KHUjwoFL3oO02S2TdndLNm10P_etBWPnmbm8d7A-zF2D2IOAvLH_RytbXEuhYSoSKiqKzaREtKkKEFc_-5lLtJbNhuGvRACMlVUpZywWj0nfXDdSJZTQ2YMHs3oDsR73xxbCrz2wVASxW8c_fnkDYYtcews37ntjveBjBuI-350BhveuhCiC_u-iffofDfcsZsam4Fmv3PKvl5fPperZP3x9r5crBOjSjkmmEIqSxQ5FpmEGrKCBIDIlKk30kg0Va4yyCpl01gB7CazZS2QAC0osLmasofL3x02OvZqMRy1R6dXi7U-aULluZSZOED0qovXBD8Mgeq_AAh9Iqv3-kxWn8jqC9mYerqkKNY4OAp6MI46Q9ZFDKO23v2b_wGs_IJB</recordid><startdate>202111</startdate><enddate>202111</enddate><creator>Thetpraphi, Kritsadi</creator><creator>Kanlayakan, Waroot</creator><creator>Chaipo, Suphita</creator><creator>Moretto, Gil</creator><creator>Kuhn, Jeff</creator><creator>Audigier, David</creator><creator>Le, Minh Quyen</creator><creator>Cottinet, Pierre-Jean</creator><creator>Petit, Lionel</creator><creator>Capsal, Jean-Fabien</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid></search><sort><creationdate>202111</creationdate><title>3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications</title><author>Thetpraphi, Kritsadi ; Kanlayakan, Waroot ; Chaipo, Suphita ; Moretto, Gil ; Kuhn, Jeff ; Audigier, David ; Le, Minh Quyen ; Cottinet, Pierre-Jean ; Petit, Lionel ; Capsal, Jean-Fabien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a41428a06a7521f157e011053cfb2c2ac96351593d40151db5d8f0ae1ad131d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D printing</topic><topic>Active control of glass deformation</topic><topic>Active optical mirror</topic><topic>EAP force-actuator</topic><topic>Electroactive doped polymer</topic><topic>Engineering Sciences</topic><topic>Flexible printed materials</topic><topic>Optimization of printed electrodes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thetpraphi, Kritsadi</creatorcontrib><creatorcontrib>Kanlayakan, Waroot</creatorcontrib><creatorcontrib>Chaipo, Suphita</creatorcontrib><creatorcontrib>Moretto, Gil</creatorcontrib><creatorcontrib>Kuhn, Jeff</creatorcontrib><creatorcontrib>Audigier, David</creatorcontrib><creatorcontrib>Le, Minh Quyen</creatorcontrib><creatorcontrib>Cottinet, Pierre-Jean</creatorcontrib><creatorcontrib>Petit, Lionel</creatorcontrib><creatorcontrib>Capsal, Jean-Fabien</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Additive manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thetpraphi, Kritsadi</au><au>Kanlayakan, Waroot</au><au>Chaipo, Suphita</au><au>Moretto, Gil</au><au>Kuhn, Jeff</au><au>Audigier, David</au><au>Le, Minh Quyen</au><au>Cottinet, Pierre-Jean</au><au>Petit, Lionel</au><au>Capsal, Jean-Fabien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications</atitle><jtitle>Additive manufacturing</jtitle><date>2021-11</date><risdate>2021</risdate><volume>47</volume><spage>102199</spage><pages>102199-</pages><artnum>102199</artnum><issn>2214-8604</issn><eissn>2214-7810</eissn><abstract>We describe a new development for a full 3D-printed-force actuator based on an advanced electroactive polymer (EAP) dedicated to large and live optical mirror applications, i.e., Live-Mirror Project (https://www.planets.life/live-mirror). The thin-film casting method was used to additively manufacture actuators, and we developed an integrating 3D printing technology to the EAP force-actuator production. Our 3D-printed actuator consists of the plasticized terpolymer layer (polyvinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene (PVDF-TrFE-CTFE) doped with diisononyl phthalate (DINP) plasticizer) sandwiched between two electrodes layers made of conductive terpolymer carbon black (CB) composite. The conductive CB layers were developed here to have a high electrical conductivity that can be used under significant voltage. We also made compatible blends with an actuator layer based on DINP polymer. Several fully 3D-printed EAP proof-of-concept actuator configurations were printed on a two-millimeters thick flat glass, i.e., an optical mirror surface. Its electromechanical performance was analyzed as a function of actuator volume, layer number, and electrical field intensity.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.addma.2021.102199</doi><orcidid>https://orcid.org/0000-0003-2904-8422</orcidid><orcidid>https://orcid.org/0000-0001-5607-1578</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2214-8604 |
ispartof | Additive manufacturing, 2021-11, Vol.47, p.102199, Article 102199 |
issn | 2214-8604 2214-7810 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03662250v1 |
source | Alma/SFX Local Collection |
subjects | 3D printing Active control of glass deformation Active optical mirror EAP force-actuator Electroactive doped polymer Engineering Sciences Flexible printed materials Optimization of printed electrodes |
title | 3D-printed electroactive polymer force-actuator for large and high precise optical mirror applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D-printed%20electroactive%20polymer%20force-actuator%20for%20large%20and%20high%20precise%20optical%20mirror%20applications&rft.jtitle=Additive%20manufacturing&rft.au=Thetpraphi,%20Kritsadi&rft.date=2021-11&rft.volume=47&rft.spage=102199&rft.pages=102199-&rft.artnum=102199&rft.issn=2214-8604&rft.eissn=2214-7810&rft_id=info:doi/10.1016/j.addma.2021.102199&rft_dat=%3Celsevier_hal_p%3ES2214860421003602%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2214860421003602&rfr_iscdi=true |