Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics
Animal community responses to extreme climate events can be predicted from the functional traits represented within communities. However, it is unclear whether geographic variation in the response of functional community structure to climate change is primarily driven by physiological matching to lo...
Gespeichert in:
Veröffentlicht in: | Functional ecology 2022-07, Vol.36 (7), p.1559-1572 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1572 |
---|---|
container_issue | 7 |
container_start_page | 1559 |
container_title | Functional ecology |
container_volume | 36 |
creator | Céréghino, Régis Trzcinski, Mark Kurtis MacDonald, A. Andrew M. Marino, Nicholas A. C. Acosta Mercado, Dimaris Leroy, Céline Corbara, Bruno Romero, Gustavo Q. Farjalla, Vinicius F. Barberis, Ignacio M. Dézerald, Olivier Hammill, Edd Atwood, Trisha B. Piccoli, Gustavo C. O. Ospina Bautista, Fabiola Carrias, Jean‐François Leal, Juliana S. Montero, Guillermo Antiqueira, Pablo A. P. Freire, Rodrigo Realpe, Emilio Amundrud, Sarah L. Omena, Paula M. Campos, Alice B. A. Srivastava, Diane S. |
description | Animal community responses to extreme climate events can be predicted from the functional traits represented within communities. However, it is unclear whether geographic variation in the response of functional community structure to climate change is primarily driven by physiological matching to local conditions (local adaptation hypothesis) or by differences between species pools in functional redundancy (insurance hypothesis).
We conducted a coordinated experiment to understand how aquatic invertebrate traits mediate the responses of multitrophic communities to changes in the quantity and evenness of rainfall in 180 natural freshwater microcosms (tank bromeliads) distributed across six sites from 18°N in the Caribbean to 29°S in South America. At each site, we manipulated the mean and dispersion of the daily amount of rainfall that entered tank bromeliads over a 2‐month period. Manipulations covered a response surface representing 50% to 200% of the dispersion of daily rainfall crossed with 10% to 300% of the mean amounts of rainfall.
The response of functional community structure to precipitation regimes differed across sites. These geographic differences were not consistent with the local adaptation hypothesis, as responses did not correlate with the current amplitude in precipitation. Geographic differences in community responses were consistent with the insurance hypothesis: sites with the lowest functional redundancy in their species pools had the strongest response to a gradient in hydrological variability induced by uneven precipitation. In such sites, an increase in the hydrologic variability induced a shift from communities with both pelagic and benthic traits using both green and brown energy channels to strictly benthic, brown energy communities.
Our results predict uneven impacts of precipitation change on community structure and energy channels within communities across Neotropical regions. This geographic variation is due more to differences in the size and redundancy of species pools than to local adaptation. Strategies for climate change adaptation should thus seek to identify and preserve functionally unique species and their habitats.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog. |
doi_str_mv | 10.1111/1365-2435.14048 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03658979v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684295094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3908-fdc5690c8b51f2b30fce5afaee38bd5967e0c5b74456654b27bfb2122b0d6e313</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0EEuVjZrXExBDqOLYbj6iiFKmCBWbLdi7UVfOB7YAqFn4Cv5FfQtIgVm456b3nPeneQ-giJddpX9M0EzyhLOPXKSMsP0CTP-UQTQgVMsmZyI7RSQgbQojklE7Qx6KrbXRNrbfYQ9HVha7tDhe6aqEOuPVgXeuiHhBs17p-AeyqVtsYcK-Etp9D-P788s6usavfwEcwXkfAtqmqrnaxn2NtfRMCjmvAD9BE37TOhjN0VOptgPPffoqeF7dP82Wyery7n9-sEptJkidlYbmQxOaGpyU1GSktcF1qgCw3BZdiBsRyM2OMC8GZoTNTGppSakghIEuzU3Q17l3rrWq9q7TfqUY7tbxZqUEjfVC5nMm3gb0c2dY3rx2EqDZN5_t0gqIiZ1RyIllPTUdqf5aH8m9tStTwDTVkr4bs1f4bvYOPjne3hd1_uFrczkffD5XOj0E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684295094</pqid></control><display><type>article</type><title>Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics</title><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><creator>Céréghino, Régis ; Trzcinski, Mark Kurtis ; MacDonald, A. Andrew M. ; Marino, Nicholas A. C. ; Acosta Mercado, Dimaris ; Leroy, Céline ; Corbara, Bruno ; Romero, Gustavo Q. ; Farjalla, Vinicius F. ; Barberis, Ignacio M. ; Dézerald, Olivier ; Hammill, Edd ; Atwood, Trisha B. ; Piccoli, Gustavo C. O. ; Ospina Bautista, Fabiola ; Carrias, Jean‐François ; Leal, Juliana S. ; Montero, Guillermo ; Antiqueira, Pablo A. P. ; Freire, Rodrigo ; Realpe, Emilio ; Amundrud, Sarah L. ; Omena, Paula M. ; Campos, Alice B. A. ; Srivastava, Diane S.</creator><creatorcontrib>Céréghino, Régis ; Trzcinski, Mark Kurtis ; MacDonald, A. Andrew M. ; Marino, Nicholas A. C. ; Acosta Mercado, Dimaris ; Leroy, Céline ; Corbara, Bruno ; Romero, Gustavo Q. ; Farjalla, Vinicius F. ; Barberis, Ignacio M. ; Dézerald, Olivier ; Hammill, Edd ; Atwood, Trisha B. ; Piccoli, Gustavo C. O. ; Ospina Bautista, Fabiola ; Carrias, Jean‐François ; Leal, Juliana S. ; Montero, Guillermo ; Antiqueira, Pablo A. P. ; Freire, Rodrigo ; Realpe, Emilio ; Amundrud, Sarah L. ; Omena, Paula M. ; Campos, Alice B. A. ; Srivastava, Diane S.</creatorcontrib><description>Animal community responses to extreme climate events can be predicted from the functional traits represented within communities. However, it is unclear whether geographic variation in the response of functional community structure to climate change is primarily driven by physiological matching to local conditions (local adaptation hypothesis) or by differences between species pools in functional redundancy (insurance hypothesis).
We conducted a coordinated experiment to understand how aquatic invertebrate traits mediate the responses of multitrophic communities to changes in the quantity and evenness of rainfall in 180 natural freshwater microcosms (tank bromeliads) distributed across six sites from 18°N in the Caribbean to 29°S in South America. At each site, we manipulated the mean and dispersion of the daily amount of rainfall that entered tank bromeliads over a 2‐month period. Manipulations covered a response surface representing 50% to 200% of the dispersion of daily rainfall crossed with 10% to 300% of the mean amounts of rainfall.
The response of functional community structure to precipitation regimes differed across sites. These geographic differences were not consistent with the local adaptation hypothesis, as responses did not correlate with the current amplitude in precipitation. Geographic differences in community responses were consistent with the insurance hypothesis: sites with the lowest functional redundancy in their species pools had the strongest response to a gradient in hydrological variability induced by uneven precipitation. In such sites, an increase in the hydrologic variability induced a shift from communities with both pelagic and benthic traits using both green and brown energy channels to strictly benthic, brown energy communities.
Our results predict uneven impacts of precipitation change on community structure and energy channels within communities across Neotropical regions. This geographic variation is due more to differences in the size and redundancy of species pools than to local adaptation. Strategies for climate change adaptation should thus seek to identify and preserve functionally unique species and their habitats.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog.</description><identifier>ISSN: 0269-8463</identifier><identifier>EISSN: 1365-2435</identifier><identifier>DOI: 10.1111/1365-2435.14048</identifier><language>eng</language><publisher>London: Wiley Subscription Services, Inc</publisher><subject>Adaptation ; Aquatic organisms ; Biodiversity ; Biodiversity and Ecology ; Botanics ; Channels ; Clean energy ; Climate adaptation ; Climate change ; Climate prediction ; Community structure ; Dispersion ; Ecology, environment ; Ecosystems ; Energy ; Environmental Sciences ; freshwater ; functional traits ; Geographical variations ; Herbivores ; Hydrology ; Hypotheses ; Insurance ; insurance hypothesis ; Invertebrates ; Life Sciences ; Microcosms ; Precipitation ; Rainfall ; Redundancy ; Species ; species richness ; Systematics, Phylogenetics and taxonomy ; Variability ; Vegetal Biology</subject><ispartof>Functional ecology, 2022-07, Vol.36 (7), p.1559-1572</ispartof><rights>2022 British Ecological Society</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3908-fdc5690c8b51f2b30fce5afaee38bd5967e0c5b74456654b27bfb2122b0d6e313</citedby><cites>FETCH-LOGICAL-c3908-fdc5690c8b51f2b30fce5afaee38bd5967e0c5b74456654b27bfb2122b0d6e313</cites><orcidid>0000-0002-6605-9270 ; 0000-0003-4084-5983 ; 0000-0001-7153-5190 ; 0000-0003-3981-3159 ; 0000-0003-4232-8234 ; 0000-0002-5221-7901 ; 0000-0002-5702-5466 ; 0000-0003-4859-8040 ; 0000-0001-6586-7834 ; 0000-0003-1162-169X ; 0000-0001-7435-0773 ; 0000-0002-9987-9865 ; 0000-0003-2498-1459 ; 0000-0002-6201-1544 ; 0000-0002-7636-3508 ; 0000-0002-1118-8796 ; 0000-0003-3736-4759 ; 0000-0001-8247-6106 ; 0000-0003-4541-5595 ; 0000-0002-0457-1551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1365-2435.14048$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1365-2435.14048$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-03658979$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Céréghino, Régis</creatorcontrib><creatorcontrib>Trzcinski, Mark Kurtis</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M.</creatorcontrib><creatorcontrib>Marino, Nicholas A. C.</creatorcontrib><creatorcontrib>Acosta Mercado, Dimaris</creatorcontrib><creatorcontrib>Leroy, Céline</creatorcontrib><creatorcontrib>Corbara, Bruno</creatorcontrib><creatorcontrib>Romero, Gustavo Q.</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><creatorcontrib>Barberis, Ignacio M.</creatorcontrib><creatorcontrib>Dézerald, Olivier</creatorcontrib><creatorcontrib>Hammill, Edd</creatorcontrib><creatorcontrib>Atwood, Trisha B.</creatorcontrib><creatorcontrib>Piccoli, Gustavo C. O.</creatorcontrib><creatorcontrib>Ospina Bautista, Fabiola</creatorcontrib><creatorcontrib>Carrias, Jean‐François</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>Montero, Guillermo</creatorcontrib><creatorcontrib>Antiqueira, Pablo A. P.</creatorcontrib><creatorcontrib>Freire, Rodrigo</creatorcontrib><creatorcontrib>Realpe, Emilio</creatorcontrib><creatorcontrib>Amundrud, Sarah L.</creatorcontrib><creatorcontrib>Omena, Paula M.</creatorcontrib><creatorcontrib>Campos, Alice B. A.</creatorcontrib><creatorcontrib>Srivastava, Diane S.</creatorcontrib><title>Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics</title><title>Functional ecology</title><description>Animal community responses to extreme climate events can be predicted from the functional traits represented within communities. However, it is unclear whether geographic variation in the response of functional community structure to climate change is primarily driven by physiological matching to local conditions (local adaptation hypothesis) or by differences between species pools in functional redundancy (insurance hypothesis).
We conducted a coordinated experiment to understand how aquatic invertebrate traits mediate the responses of multitrophic communities to changes in the quantity and evenness of rainfall in 180 natural freshwater microcosms (tank bromeliads) distributed across six sites from 18°N in the Caribbean to 29°S in South America. At each site, we manipulated the mean and dispersion of the daily amount of rainfall that entered tank bromeliads over a 2‐month period. Manipulations covered a response surface representing 50% to 200% of the dispersion of daily rainfall crossed with 10% to 300% of the mean amounts of rainfall.
The response of functional community structure to precipitation regimes differed across sites. These geographic differences were not consistent with the local adaptation hypothesis, as responses did not correlate with the current amplitude in precipitation. Geographic differences in community responses were consistent with the insurance hypothesis: sites with the lowest functional redundancy in their species pools had the strongest response to a gradient in hydrological variability induced by uneven precipitation. In such sites, an increase in the hydrologic variability induced a shift from communities with both pelagic and benthic traits using both green and brown energy channels to strictly benthic, brown energy communities.
Our results predict uneven impacts of precipitation change on community structure and energy channels within communities across Neotropical regions. This geographic variation is due more to differences in the size and redundancy of species pools than to local adaptation. Strategies for climate change adaptation should thus seek to identify and preserve functionally unique species and their habitats.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog.</description><subject>Adaptation</subject><subject>Aquatic organisms</subject><subject>Biodiversity</subject><subject>Biodiversity and Ecology</subject><subject>Botanics</subject><subject>Channels</subject><subject>Clean energy</subject><subject>Climate adaptation</subject><subject>Climate change</subject><subject>Climate prediction</subject><subject>Community structure</subject><subject>Dispersion</subject><subject>Ecology, environment</subject><subject>Ecosystems</subject><subject>Energy</subject><subject>Environmental Sciences</subject><subject>freshwater</subject><subject>functional traits</subject><subject>Geographical variations</subject><subject>Herbivores</subject><subject>Hydrology</subject><subject>Hypotheses</subject><subject>Insurance</subject><subject>insurance hypothesis</subject><subject>Invertebrates</subject><subject>Life Sciences</subject><subject>Microcosms</subject><subject>Precipitation</subject><subject>Rainfall</subject><subject>Redundancy</subject><subject>Species</subject><subject>species richness</subject><subject>Systematics, Phylogenetics and taxonomy</subject><subject>Variability</subject><subject>Vegetal Biology</subject><issn>0269-8463</issn><issn>1365-2435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0EEuVjZrXExBDqOLYbj6iiFKmCBWbLdi7UVfOB7YAqFn4Cv5FfQtIgVm456b3nPeneQ-giJddpX9M0EzyhLOPXKSMsP0CTP-UQTQgVMsmZyI7RSQgbQojklE7Qx6KrbXRNrbfYQ9HVha7tDhe6aqEOuPVgXeuiHhBs17p-AeyqVtsYcK-Etp9D-P788s6usavfwEcwXkfAtqmqrnaxn2NtfRMCjmvAD9BE37TOhjN0VOptgPPffoqeF7dP82Wyery7n9-sEptJkidlYbmQxOaGpyU1GSktcF1qgCw3BZdiBsRyM2OMC8GZoTNTGppSakghIEuzU3Q17l3rrWq9q7TfqUY7tbxZqUEjfVC5nMm3gb0c2dY3rx2EqDZN5_t0gqIiZ1RyIllPTUdqf5aH8m9tStTwDTVkr4bs1f4bvYOPjne3hd1_uFrczkffD5XOj0E</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Céréghino, Régis</creator><creator>Trzcinski, Mark Kurtis</creator><creator>MacDonald, A. Andrew M.</creator><creator>Marino, Nicholas A. C.</creator><creator>Acosta Mercado, Dimaris</creator><creator>Leroy, Céline</creator><creator>Corbara, Bruno</creator><creator>Romero, Gustavo Q.</creator><creator>Farjalla, Vinicius F.</creator><creator>Barberis, Ignacio M.</creator><creator>Dézerald, Olivier</creator><creator>Hammill, Edd</creator><creator>Atwood, Trisha B.</creator><creator>Piccoli, Gustavo C. O.</creator><creator>Ospina Bautista, Fabiola</creator><creator>Carrias, Jean‐François</creator><creator>Leal, Juliana S.</creator><creator>Montero, Guillermo</creator><creator>Antiqueira, Pablo A. P.</creator><creator>Freire, Rodrigo</creator><creator>Realpe, Emilio</creator><creator>Amundrud, Sarah L.</creator><creator>Omena, Paula M.</creator><creator>Campos, Alice B. A.</creator><creator>Srivastava, Diane S.</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6605-9270</orcidid><orcidid>https://orcid.org/0000-0003-4084-5983</orcidid><orcidid>https://orcid.org/0000-0001-7153-5190</orcidid><orcidid>https://orcid.org/0000-0003-3981-3159</orcidid><orcidid>https://orcid.org/0000-0003-4232-8234</orcidid><orcidid>https://orcid.org/0000-0002-5221-7901</orcidid><orcidid>https://orcid.org/0000-0002-5702-5466</orcidid><orcidid>https://orcid.org/0000-0003-4859-8040</orcidid><orcidid>https://orcid.org/0000-0001-6586-7834</orcidid><orcidid>https://orcid.org/0000-0003-1162-169X</orcidid><orcidid>https://orcid.org/0000-0001-7435-0773</orcidid><orcidid>https://orcid.org/0000-0002-9987-9865</orcidid><orcidid>https://orcid.org/0000-0003-2498-1459</orcidid><orcidid>https://orcid.org/0000-0002-6201-1544</orcidid><orcidid>https://orcid.org/0000-0002-7636-3508</orcidid><orcidid>https://orcid.org/0000-0002-1118-8796</orcidid><orcidid>https://orcid.org/0000-0003-3736-4759</orcidid><orcidid>https://orcid.org/0000-0001-8247-6106</orcidid><orcidid>https://orcid.org/0000-0003-4541-5595</orcidid><orcidid>https://orcid.org/0000-0002-0457-1551</orcidid></search><sort><creationdate>202207</creationdate><title>Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics</title><author>Céréghino, Régis ; Trzcinski, Mark Kurtis ; MacDonald, A. Andrew M. ; Marino, Nicholas A. C. ; Acosta Mercado, Dimaris ; Leroy, Céline ; Corbara, Bruno ; Romero, Gustavo Q. ; Farjalla, Vinicius F. ; Barberis, Ignacio M. ; Dézerald, Olivier ; Hammill, Edd ; Atwood, Trisha B. ; Piccoli, Gustavo C. O. ; Ospina Bautista, Fabiola ; Carrias, Jean‐François ; Leal, Juliana S. ; Montero, Guillermo ; Antiqueira, Pablo A. P. ; Freire, Rodrigo ; Realpe, Emilio ; Amundrud, Sarah L. ; Omena, Paula M. ; Campos, Alice B. A. ; Srivastava, Diane S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3908-fdc5690c8b51f2b30fce5afaee38bd5967e0c5b74456654b27bfb2122b0d6e313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation</topic><topic>Aquatic organisms</topic><topic>Biodiversity</topic><topic>Biodiversity and Ecology</topic><topic>Botanics</topic><topic>Channels</topic><topic>Clean energy</topic><topic>Climate adaptation</topic><topic>Climate change</topic><topic>Climate prediction</topic><topic>Community structure</topic><topic>Dispersion</topic><topic>Ecology, environment</topic><topic>Ecosystems</topic><topic>Energy</topic><topic>Environmental Sciences</topic><topic>freshwater</topic><topic>functional traits</topic><topic>Geographical variations</topic><topic>Herbivores</topic><topic>Hydrology</topic><topic>Hypotheses</topic><topic>Insurance</topic><topic>insurance hypothesis</topic><topic>Invertebrates</topic><topic>Life Sciences</topic><topic>Microcosms</topic><topic>Precipitation</topic><topic>Rainfall</topic><topic>Redundancy</topic><topic>Species</topic><topic>species richness</topic><topic>Systematics, Phylogenetics and taxonomy</topic><topic>Variability</topic><topic>Vegetal Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Céréghino, Régis</creatorcontrib><creatorcontrib>Trzcinski, Mark Kurtis</creatorcontrib><creatorcontrib>MacDonald, A. Andrew M.</creatorcontrib><creatorcontrib>Marino, Nicholas A. C.</creatorcontrib><creatorcontrib>Acosta Mercado, Dimaris</creatorcontrib><creatorcontrib>Leroy, Céline</creatorcontrib><creatorcontrib>Corbara, Bruno</creatorcontrib><creatorcontrib>Romero, Gustavo Q.</creatorcontrib><creatorcontrib>Farjalla, Vinicius F.</creatorcontrib><creatorcontrib>Barberis, Ignacio M.</creatorcontrib><creatorcontrib>Dézerald, Olivier</creatorcontrib><creatorcontrib>Hammill, Edd</creatorcontrib><creatorcontrib>Atwood, Trisha B.</creatorcontrib><creatorcontrib>Piccoli, Gustavo C. O.</creatorcontrib><creatorcontrib>Ospina Bautista, Fabiola</creatorcontrib><creatorcontrib>Carrias, Jean‐François</creatorcontrib><creatorcontrib>Leal, Juliana S.</creatorcontrib><creatorcontrib>Montero, Guillermo</creatorcontrib><creatorcontrib>Antiqueira, Pablo A. P.</creatorcontrib><creatorcontrib>Freire, Rodrigo</creatorcontrib><creatorcontrib>Realpe, Emilio</creatorcontrib><creatorcontrib>Amundrud, Sarah L.</creatorcontrib><creatorcontrib>Omena, Paula M.</creatorcontrib><creatorcontrib>Campos, Alice B. A.</creatorcontrib><creatorcontrib>Srivastava, Diane S.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Functional ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Céréghino, Régis</au><au>Trzcinski, Mark Kurtis</au><au>MacDonald, A. Andrew M.</au><au>Marino, Nicholas A. C.</au><au>Acosta Mercado, Dimaris</au><au>Leroy, Céline</au><au>Corbara, Bruno</au><au>Romero, Gustavo Q.</au><au>Farjalla, Vinicius F.</au><au>Barberis, Ignacio M.</au><au>Dézerald, Olivier</au><au>Hammill, Edd</au><au>Atwood, Trisha B.</au><au>Piccoli, Gustavo C. O.</au><au>Ospina Bautista, Fabiola</au><au>Carrias, Jean‐François</au><au>Leal, Juliana S.</au><au>Montero, Guillermo</au><au>Antiqueira, Pablo A. P.</au><au>Freire, Rodrigo</au><au>Realpe, Emilio</au><au>Amundrud, Sarah L.</au><au>Omena, Paula M.</au><au>Campos, Alice B. A.</au><au>Srivastava, Diane S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics</atitle><jtitle>Functional ecology</jtitle><date>2022-07</date><risdate>2022</risdate><volume>36</volume><issue>7</issue><spage>1559</spage><epage>1572</epage><pages>1559-1572</pages><issn>0269-8463</issn><eissn>1365-2435</eissn><abstract>Animal community responses to extreme climate events can be predicted from the functional traits represented within communities. However, it is unclear whether geographic variation in the response of functional community structure to climate change is primarily driven by physiological matching to local conditions (local adaptation hypothesis) or by differences between species pools in functional redundancy (insurance hypothesis).
We conducted a coordinated experiment to understand how aquatic invertebrate traits mediate the responses of multitrophic communities to changes in the quantity and evenness of rainfall in 180 natural freshwater microcosms (tank bromeliads) distributed across six sites from 18°N in the Caribbean to 29°S in South America. At each site, we manipulated the mean and dispersion of the daily amount of rainfall that entered tank bromeliads over a 2‐month period. Manipulations covered a response surface representing 50% to 200% of the dispersion of daily rainfall crossed with 10% to 300% of the mean amounts of rainfall.
The response of functional community structure to precipitation regimes differed across sites. These geographic differences were not consistent with the local adaptation hypothesis, as responses did not correlate with the current amplitude in precipitation. Geographic differences in community responses were consistent with the insurance hypothesis: sites with the lowest functional redundancy in their species pools had the strongest response to a gradient in hydrological variability induced by uneven precipitation. In such sites, an increase in the hydrologic variability induced a shift from communities with both pelagic and benthic traits using both green and brown energy channels to strictly benthic, brown energy communities.
Our results predict uneven impacts of precipitation change on community structure and energy channels within communities across Neotropical regions. This geographic variation is due more to differences in the size and redundancy of species pools than to local adaptation. Strategies for climate change adaptation should thus seek to identify and preserve functionally unique species and their habitats.
Read the free Plain Language Summary for this article on the Journal blog.
Read the free Plain Language Summary for this article on the Journal blog.</abstract><cop>London</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/1365-2435.14048</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-6605-9270</orcidid><orcidid>https://orcid.org/0000-0003-4084-5983</orcidid><orcidid>https://orcid.org/0000-0001-7153-5190</orcidid><orcidid>https://orcid.org/0000-0003-3981-3159</orcidid><orcidid>https://orcid.org/0000-0003-4232-8234</orcidid><orcidid>https://orcid.org/0000-0002-5221-7901</orcidid><orcidid>https://orcid.org/0000-0002-5702-5466</orcidid><orcidid>https://orcid.org/0000-0003-4859-8040</orcidid><orcidid>https://orcid.org/0000-0001-6586-7834</orcidid><orcidid>https://orcid.org/0000-0003-1162-169X</orcidid><orcidid>https://orcid.org/0000-0001-7435-0773</orcidid><orcidid>https://orcid.org/0000-0002-9987-9865</orcidid><orcidid>https://orcid.org/0000-0003-2498-1459</orcidid><orcidid>https://orcid.org/0000-0002-6201-1544</orcidid><orcidid>https://orcid.org/0000-0002-7636-3508</orcidid><orcidid>https://orcid.org/0000-0002-1118-8796</orcidid><orcidid>https://orcid.org/0000-0003-3736-4759</orcidid><orcidid>https://orcid.org/0000-0001-8247-6106</orcidid><orcidid>https://orcid.org/0000-0003-4541-5595</orcidid><orcidid>https://orcid.org/0000-0002-0457-1551</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0269-8463 |
ispartof | Functional ecology, 2022-07, Vol.36 (7), p.1559-1572 |
issn | 0269-8463 1365-2435 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03658979v1 |
source | Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals |
subjects | Adaptation Aquatic organisms Biodiversity Biodiversity and Ecology Botanics Channels Clean energy Climate adaptation Climate change Climate prediction Community structure Dispersion Ecology, environment Ecosystems Energy Environmental Sciences freshwater functional traits Geographical variations Herbivores Hydrology Hypotheses Insurance insurance hypothesis Invertebrates Life Sciences Microcosms Precipitation Rainfall Redundancy Species species richness Systematics, Phylogenetics and taxonomy Variability Vegetal Biology |
title | Functional redundancy dampens precipitation change impacts on species‐rich invertebrate communities across the Neotropics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T02%3A52%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20redundancy%20dampens%20precipitation%20change%20impacts%20on%20species%E2%80%90rich%20invertebrate%20communities%20across%20the%20Neotropics&rft.jtitle=Functional%20ecology&rft.au=C%C3%A9r%C3%A9ghino,%20R%C3%A9gis&rft.date=2022-07&rft.volume=36&rft.issue=7&rft.spage=1559&rft.epage=1572&rft.pages=1559-1572&rft.issn=0269-8463&rft.eissn=1365-2435&rft_id=info:doi/10.1111/1365-2435.14048&rft_dat=%3Cproquest_hal_p%3E2684295094%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684295094&rft_id=info:pmid/&rfr_iscdi=true |