ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice

ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of immunology 2022-08, Vol.52 (8), p.1228-1242
Hauptverfasser: Sevilla‐Movilla, Silvia, Fuentes, Patricia, Rodríguez‐García, Yaiza, Arellano‐Sánchez, Nohemi, Krenn, Peter W., Val, Soledad Isern, Montero‐Herradón, Sara, García‐Ceca, Javier, Burdiel‐Herencia, Valeria, Gardeta, Sofía R., Aguilera‐Montilla, Noemí, Barrio‐Alonso, Celia, Crainiciuc, Georgiana, Bouvard, Daniel, García‐Pardo, Angeles, Zapata, Agustin G., Hidalgo, Andrés, Fässler, Reinhard, Carrasco, Yolanda R., Toribio, Maria L., Teixidó, Joaquin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1242
container_issue 8
container_start_page 1228
container_title European journal of immunology
container_volume 52
creator Sevilla‐Movilla, Silvia
Fuentes, Patricia
Rodríguez‐García, Yaiza
Arellano‐Sánchez, Nohemi
Krenn, Peter W.
Val, Soledad Isern
Montero‐Herradón, Sara
García‐Ceca, Javier
Burdiel‐Herencia, Valeria
Gardeta, Sofía R.
Aguilera‐Montilla, Noemí
Barrio‐Alonso, Celia
Crainiciuc, Georgiana
Bouvard, Daniel
García‐Pardo, Angeles
Zapata, Agustin G.
Hidalgo, Andrés
Fässler, Reinhard
Carrasco, Yolanda R.
Toribio, Maria L.
Teixidó, Joaquin
description ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defective single‐positive (SP) CD8+ cell generation, thus, unveiling an ICAP‐1 involvement in SP thymocyte development. ICAP‐1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP‐1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP‐1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion, indicating that ICAP‐1 negatively controls their attachment. Furthermore, CD3+‐ and CD19+‐selected spleen cells from ICAP‐1‐null mice showed reduced proliferation in response to T‐ and B‐cell stimuli, respectively. Finally, loss of ICAP‐1 caused a remarkable decrease in marginal zone B‐ cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP‐1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B‐cell numbers. Graphical : Lack of ICAP‐1 leads to impaired single‐positive CD8+ thymocyte development without affecting integrin α4β1‐dependent thymocyte adhesion. ICAP‐1 showed a strong nuclear distribution in thymocytes. ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion and reduced proliferation. Loss of ICAP‐1 led to decreased marginal zone B‐cell frequencies.
doi_str_mv 10.1002/eji.202149560
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03657861v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658650941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3938-c72c1d6c1515077b389d12058cbe3b7e1627df4af2a720f7ebeb978677ce24ff3</originalsourceid><addsrcrecordid>eNp90ctu1DAUBmALgei0sGSLLLGhQim-X5ZlKLRoJFjA2nKcE-qRkwxxUjSseASekSfB0ZRZsGBlyfr8-9g_Qs8ouaCEsNewjReMMCqsVOQBWlHJaCWooA_RihAqKmYNOUGnOW8JIVZJ-xidcCkstUKtULhZX376_fMXxWnIGcdu5-OY8fqteYWn2303hP0EuIE7SMOug37Cvm9wAt9kPA14hGYO0ODOj19j7xP-MfSA3-AAKZW0HncxwBP0qPUpw9P79Qx9eXf1eX1dbT6-L9dvqsAtN1XQLNBGBSqpJFrX3NiGMiJNqIHXGqhiummFb5nXjLQaaqitNkrrAEy0LT9D54fcW5_cboxlqL0bfHTXlxu37BGuZDlA72ixLw92Nw7fZsiT62JepvY9DHN2TEmjJLFioS_-odthHstjF2UN04YrUlR1UGEsHzlCe5yAErc05UpT7thU8c_vU-e6g-ao_1ZTADuA7zHB_v9p7urDjWTG8D-iTpvM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2698278360</pqid></control><display><type>article</type><title>ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via Wiley Online Library</source><source>Wiley Online Library (Open Access Collection)</source><creator>Sevilla‐Movilla, Silvia ; Fuentes, Patricia ; Rodríguez‐García, Yaiza ; Arellano‐Sánchez, Nohemi ; Krenn, Peter W. ; Val, Soledad Isern ; Montero‐Herradón, Sara ; García‐Ceca, Javier ; Burdiel‐Herencia, Valeria ; Gardeta, Sofía R. ; Aguilera‐Montilla, Noemí ; Barrio‐Alonso, Celia ; Crainiciuc, Georgiana ; Bouvard, Daniel ; García‐Pardo, Angeles ; Zapata, Agustin G. ; Hidalgo, Andrés ; Fässler, Reinhard ; Carrasco, Yolanda R. ; Toribio, Maria L. ; Teixidó, Joaquin</creator><creatorcontrib>Sevilla‐Movilla, Silvia ; Fuentes, Patricia ; Rodríguez‐García, Yaiza ; Arellano‐Sánchez, Nohemi ; Krenn, Peter W. ; Val, Soledad Isern ; Montero‐Herradón, Sara ; García‐Ceca, Javier ; Burdiel‐Herencia, Valeria ; Gardeta, Sofía R. ; Aguilera‐Montilla, Noemí ; Barrio‐Alonso, Celia ; Crainiciuc, Georgiana ; Bouvard, Daniel ; García‐Pardo, Angeles ; Zapata, Agustin G. ; Hidalgo, Andrés ; Fässler, Reinhard ; Carrasco, Yolanda R. ; Toribio, Maria L. ; Teixidó, Joaquin</creatorcontrib><description>ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defective single‐positive (SP) CD8+ cell generation, thus, unveiling an ICAP‐1 involvement in SP thymocyte development. ICAP‐1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP‐1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP‐1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion, indicating that ICAP‐1 negatively controls their attachment. Furthermore, CD3+‐ and CD19+‐selected spleen cells from ICAP‐1‐null mice showed reduced proliferation in response to T‐ and B‐cell stimuli, respectively. Finally, loss of ICAP‐1 caused a remarkable decrease in marginal zone B‐ cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP‐1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B‐cell numbers. Graphical : Lack of ICAP‐1 leads to impaired single‐positive CD8+ thymocyte development without affecting integrin α4β1‐dependent thymocyte adhesion. ICAP‐1 showed a strong nuclear distribution in thymocytes. ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion and reduced proliferation. Loss of ICAP‐1 led to decreased marginal zone B‐cell frequencies.</description><identifier>ISSN: 0014-2980</identifier><identifier>EISSN: 1521-4141</identifier><identifier>DOI: 10.1002/eji.202149560</identifier><identifier>PMID: 35491946</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>B‐ cell maturation ; CD19 antigen ; CD3 antigen ; CD8 antigen ; Cell activation ; Cell adhesion ; Cell proliferation ; Cytoplasm ; ICAP‐1 ; integrins ; Life Sciences ; Localization ; Lymphocytes B ; Runx3 protein ; Spleen ; thymocyte development ; Thymocytes</subject><ispartof>European journal of immunology, 2022-08, Vol.52 (8), p.1228-1242</ispartof><rights>2022 The Authors. European Journal of Immunology published by Wiley‐VCH GmbH.</rights><rights>2022 The Authors. European Journal of Immunology published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3938-c72c1d6c1515077b389d12058cbe3b7e1627df4af2a720f7ebeb978677ce24ff3</cites><orcidid>0000-0002-3177-4151 ; 0000-0002-0145-6937</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feji.202149560$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feji.202149560$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35491946$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03657861$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sevilla‐Movilla, Silvia</creatorcontrib><creatorcontrib>Fuentes, Patricia</creatorcontrib><creatorcontrib>Rodríguez‐García, Yaiza</creatorcontrib><creatorcontrib>Arellano‐Sánchez, Nohemi</creatorcontrib><creatorcontrib>Krenn, Peter W.</creatorcontrib><creatorcontrib>Val, Soledad Isern</creatorcontrib><creatorcontrib>Montero‐Herradón, Sara</creatorcontrib><creatorcontrib>García‐Ceca, Javier</creatorcontrib><creatorcontrib>Burdiel‐Herencia, Valeria</creatorcontrib><creatorcontrib>Gardeta, Sofía R.</creatorcontrib><creatorcontrib>Aguilera‐Montilla, Noemí</creatorcontrib><creatorcontrib>Barrio‐Alonso, Celia</creatorcontrib><creatorcontrib>Crainiciuc, Georgiana</creatorcontrib><creatorcontrib>Bouvard, Daniel</creatorcontrib><creatorcontrib>García‐Pardo, Angeles</creatorcontrib><creatorcontrib>Zapata, Agustin G.</creatorcontrib><creatorcontrib>Hidalgo, Andrés</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Carrasco, Yolanda R.</creatorcontrib><creatorcontrib>Toribio, Maria L.</creatorcontrib><creatorcontrib>Teixidó, Joaquin</creatorcontrib><title>ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice</title><title>European journal of immunology</title><addtitle>Eur J Immunol</addtitle><description>ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defective single‐positive (SP) CD8+ cell generation, thus, unveiling an ICAP‐1 involvement in SP thymocyte development. ICAP‐1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP‐1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP‐1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion, indicating that ICAP‐1 negatively controls their attachment. Furthermore, CD3+‐ and CD19+‐selected spleen cells from ICAP‐1‐null mice showed reduced proliferation in response to T‐ and B‐cell stimuli, respectively. Finally, loss of ICAP‐1 caused a remarkable decrease in marginal zone B‐ cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP‐1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B‐cell numbers. Graphical : Lack of ICAP‐1 leads to impaired single‐positive CD8+ thymocyte development without affecting integrin α4β1‐dependent thymocyte adhesion. ICAP‐1 showed a strong nuclear distribution in thymocytes. ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion and reduced proliferation. Loss of ICAP‐1 led to decreased marginal zone B‐cell frequencies.</description><subject>B‐ cell maturation</subject><subject>CD19 antigen</subject><subject>CD3 antigen</subject><subject>CD8 antigen</subject><subject>Cell activation</subject><subject>Cell adhesion</subject><subject>Cell proliferation</subject><subject>Cytoplasm</subject><subject>ICAP‐1</subject><subject>integrins</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Lymphocytes B</subject><subject>Runx3 protein</subject><subject>Spleen</subject><subject>thymocyte development</subject><subject>Thymocytes</subject><issn>0014-2980</issn><issn>1521-4141</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90ctu1DAUBmALgei0sGSLLLGhQim-X5ZlKLRoJFjA2nKcE-qRkwxxUjSseASekSfB0ZRZsGBlyfr8-9g_Qs8ouaCEsNewjReMMCqsVOQBWlHJaCWooA_RihAqKmYNOUGnOW8JIVZJ-xidcCkstUKtULhZX376_fMXxWnIGcdu5-OY8fqteYWn2303hP0EuIE7SMOug37Cvm9wAt9kPA14hGYO0ODOj19j7xP-MfSA3-AAKZW0HncxwBP0qPUpw9P79Qx9eXf1eX1dbT6-L9dvqsAtN1XQLNBGBSqpJFrX3NiGMiJNqIHXGqhiummFb5nXjLQaaqitNkrrAEy0LT9D54fcW5_cboxlqL0bfHTXlxu37BGuZDlA72ixLw92Nw7fZsiT62JepvY9DHN2TEmjJLFioS_-odthHstjF2UN04YrUlR1UGEsHzlCe5yAErc05UpT7thU8c_vU-e6g-ao_1ZTADuA7zHB_v9p7urDjWTG8D-iTpvM</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Sevilla‐Movilla, Silvia</creator><creator>Fuentes, Patricia</creator><creator>Rodríguez‐García, Yaiza</creator><creator>Arellano‐Sánchez, Nohemi</creator><creator>Krenn, Peter W.</creator><creator>Val, Soledad Isern</creator><creator>Montero‐Herradón, Sara</creator><creator>García‐Ceca, Javier</creator><creator>Burdiel‐Herencia, Valeria</creator><creator>Gardeta, Sofía R.</creator><creator>Aguilera‐Montilla, Noemí</creator><creator>Barrio‐Alonso, Celia</creator><creator>Crainiciuc, Georgiana</creator><creator>Bouvard, Daniel</creator><creator>García‐Pardo, Angeles</creator><creator>Zapata, Agustin G.</creator><creator>Hidalgo, Andrés</creator><creator>Fässler, Reinhard</creator><creator>Carrasco, Yolanda R.</creator><creator>Toribio, Maria L.</creator><creator>Teixidó, Joaquin</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3177-4151</orcidid><orcidid>https://orcid.org/0000-0002-0145-6937</orcidid></search><sort><creationdate>202208</creationdate><title>ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice</title><author>Sevilla‐Movilla, Silvia ; Fuentes, Patricia ; Rodríguez‐García, Yaiza ; Arellano‐Sánchez, Nohemi ; Krenn, Peter W. ; Val, Soledad Isern ; Montero‐Herradón, Sara ; García‐Ceca, Javier ; Burdiel‐Herencia, Valeria ; Gardeta, Sofía R. ; Aguilera‐Montilla, Noemí ; Barrio‐Alonso, Celia ; Crainiciuc, Georgiana ; Bouvard, Daniel ; García‐Pardo, Angeles ; Zapata, Agustin G. ; Hidalgo, Andrés ; Fässler, Reinhard ; Carrasco, Yolanda R. ; Toribio, Maria L. ; Teixidó, Joaquin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3938-c72c1d6c1515077b389d12058cbe3b7e1627df4af2a720f7ebeb978677ce24ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>B‐ cell maturation</topic><topic>CD19 antigen</topic><topic>CD3 antigen</topic><topic>CD8 antigen</topic><topic>Cell activation</topic><topic>Cell adhesion</topic><topic>Cell proliferation</topic><topic>Cytoplasm</topic><topic>ICAP‐1</topic><topic>integrins</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Lymphocytes B</topic><topic>Runx3 protein</topic><topic>Spleen</topic><topic>thymocyte development</topic><topic>Thymocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sevilla‐Movilla, Silvia</creatorcontrib><creatorcontrib>Fuentes, Patricia</creatorcontrib><creatorcontrib>Rodríguez‐García, Yaiza</creatorcontrib><creatorcontrib>Arellano‐Sánchez, Nohemi</creatorcontrib><creatorcontrib>Krenn, Peter W.</creatorcontrib><creatorcontrib>Val, Soledad Isern</creatorcontrib><creatorcontrib>Montero‐Herradón, Sara</creatorcontrib><creatorcontrib>García‐Ceca, Javier</creatorcontrib><creatorcontrib>Burdiel‐Herencia, Valeria</creatorcontrib><creatorcontrib>Gardeta, Sofía R.</creatorcontrib><creatorcontrib>Aguilera‐Montilla, Noemí</creatorcontrib><creatorcontrib>Barrio‐Alonso, Celia</creatorcontrib><creatorcontrib>Crainiciuc, Georgiana</creatorcontrib><creatorcontrib>Bouvard, Daniel</creatorcontrib><creatorcontrib>García‐Pardo, Angeles</creatorcontrib><creatorcontrib>Zapata, Agustin G.</creatorcontrib><creatorcontrib>Hidalgo, Andrés</creatorcontrib><creatorcontrib>Fässler, Reinhard</creatorcontrib><creatorcontrib>Carrasco, Yolanda R.</creatorcontrib><creatorcontrib>Toribio, Maria L.</creatorcontrib><creatorcontrib>Teixidó, Joaquin</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>European journal of immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sevilla‐Movilla, Silvia</au><au>Fuentes, Patricia</au><au>Rodríguez‐García, Yaiza</au><au>Arellano‐Sánchez, Nohemi</au><au>Krenn, Peter W.</au><au>Val, Soledad Isern</au><au>Montero‐Herradón, Sara</au><au>García‐Ceca, Javier</au><au>Burdiel‐Herencia, Valeria</au><au>Gardeta, Sofía R.</au><au>Aguilera‐Montilla, Noemí</au><au>Barrio‐Alonso, Celia</au><au>Crainiciuc, Georgiana</au><au>Bouvard, Daniel</au><au>García‐Pardo, Angeles</au><au>Zapata, Agustin G.</au><au>Hidalgo, Andrés</au><au>Fässler, Reinhard</au><au>Carrasco, Yolanda R.</au><au>Toribio, Maria L.</au><au>Teixidó, Joaquin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice</atitle><jtitle>European journal of immunology</jtitle><addtitle>Eur J Immunol</addtitle><date>2022-08</date><risdate>2022</risdate><volume>52</volume><issue>8</issue><spage>1228</spage><epage>1242</epage><pages>1228-1242</pages><issn>0014-2980</issn><eissn>1521-4141</eissn><abstract>ICAP‐1 regulates β1‐integrin activation and cell adhesion. Here, we used ICAP‐1‐null mice to study ICAP‐1 potential involvement during immune cell development and function. Integrin α4β1‐dependent adhesion was comparable between ICAP‐1‐null and control thymocytes, but lack of ICAP‐1 caused a defective single‐positive (SP) CD8+ cell generation, thus, unveiling an ICAP‐1 involvement in SP thymocyte development. ICAP‐1 bears a nuclear localization signal and we found it displayed a strong nuclear distribution in thymocytes. Interestingly, there was a direct correlation between the lack of ICAP‐1 and reduced levels in SP CD8+ thymocytes of Runx3, a transcription factor required for CD8+ thymocyte generation. In the spleen, ICAP‐1 was found evenly distributed between cytoplasm and nuclear fractions, and ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion, indicating that ICAP‐1 negatively controls their attachment. Furthermore, CD3+‐ and CD19+‐selected spleen cells from ICAP‐1‐null mice showed reduced proliferation in response to T‐ and B‐cell stimuli, respectively. Finally, loss of ICAP‐1 caused a remarkable decrease in marginal zone B‐ cell frequencies and a moderate increase in follicular B cells. Together, these data unravel an ICAP‐1 involvement in the generation of SP CD8+ thymocytes and in the control of marginal zone B‐cell numbers. Graphical : Lack of ICAP‐1 leads to impaired single‐positive CD8+ thymocyte development without affecting integrin α4β1‐dependent thymocyte adhesion. ICAP‐1 showed a strong nuclear distribution in thymocytes. ICAP‐1–/– spleen T and B cells displayed upregulation of α4β1‐mediated adhesion and reduced proliferation. Loss of ICAP‐1 led to decreased marginal zone B‐cell frequencies.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35491946</pmid><doi>10.1002/eji.202149560</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-3177-4151</orcidid><orcidid>https://orcid.org/0000-0002-0145-6937</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0014-2980
ispartof European journal of immunology, 2022-08, Vol.52 (8), p.1228-1242
issn 0014-2980
1521-4141
language eng
recordid cdi_hal_primary_oai_HAL_hal_03657861v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via Wiley Online Library; Wiley Online Library (Open Access Collection)
subjects B‐ cell maturation
CD19 antigen
CD3 antigen
CD8 antigen
Cell activation
Cell adhesion
Cell proliferation
Cytoplasm
ICAP‐1
integrins
Life Sciences
Localization
Lymphocytes B
Runx3 protein
Spleen
thymocyte development
Thymocytes
title ICAP‐1 loss impairs CD8+ thymocyte development and leads to reduced marginal zone B cells in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A40%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ICAP%E2%80%901%20loss%20impairs%20CD8+%20thymocyte%20development%20and%20leads%20to%20reduced%20marginal%20zone%20B%20cells%20in%20mice&rft.jtitle=European%20journal%20of%20immunology&rft.au=Sevilla%E2%80%90Movilla,%20Silvia&rft.date=2022-08&rft.volume=52&rft.issue=8&rft.spage=1228&rft.epage=1242&rft.pages=1228-1242&rft.issn=0014-2980&rft.eissn=1521-4141&rft_id=info:doi/10.1002/eji.202149560&rft_dat=%3Cproquest_hal_p%3E2658650941%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2698278360&rft_id=info:pmid/35491946&rfr_iscdi=true