Non-linear homogenization of polymer composites with porous inclusions
We homogenize the mechanical properties of a two-phase polymer composite, made of a polyurethane matrix containing porous spherical silicone-based inclusions, and designed to be used for wave control as a local resonant insulator. First we consider a homogenized energy for the spherical inclusions,...
Gespeichert in:
Veröffentlicht in: | Mechanics of materials 2022-05, Vol.168, p.104276, Article 104276 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 104276 |
container_title | Mechanics of materials |
container_volume | 168 |
creator | Zeka, D. Catapano, A. Mariano, P.M. Montemurro, M. Poupart, R. Mondain-Monval, O. Delcroix, J. Rublon, P. |
description | We homogenize the mechanical properties of a two-phase polymer composite, made of a polyurethane matrix containing porous spherical silicone-based inclusions, and designed to be used for wave control as a local resonant insulator. First we consider a homogenized energy for the spherical inclusions, an expression obtained by an explicit method. Then, we couple inclusions and matrix by means of the second-order tangent method. Direct finite element simulations allow some comparisons with available experiments.
•Non-linear homogenisation of two-phase composite made of porous spherical inclusions•Explicit energy-based approach for homogenization of spherical inclusions•Second-order tangent method•Validation through comparison with experimental and numerical results |
doi_str_mv | 10.1016/j.mechmat.2022.104276 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03652773v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167663622000606</els_id><sourcerecordid>oai_HAL_hal_03652773v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-ba3690063b6378af325af3f30c4c93806620fb1a921710930c64b891dfc2a0273</originalsourceid><addsrcrecordid>eNqFkEFLwzAUx4MoOKcfQejVQ-dL0ibNScZwThh60XNIs8RmtM1Iusn89GZ0ePXyHvz5_R-8H0L3GGYYMHvczjqjm04NMwKEpKwgnF2gCa44yTkv6CWaJI7njFF2jW5i3AJAKUo-Qcs33-et640KWeM7_2V696MG5_vM22zn22NnQqZ9t_PRDSZm325oUh78Pmau1-0-Jjbeoiur2mjuznuKPpfPH4tVvn5_eV3M17mmAoa8VpQJAEZrRnmlLCVlGpaCLrSgFTBGwNZYCYI5BpFyVtSVwBuriQLC6RQ9jHcb1cpdcJ0KR-mVk6v5Wp4yoKwknNMDTmw5sjr4GIOxfwUM8iRObuVZnDyJk6O41HsaeyY9cnAmyKid6bXZuGD0IDfe_XPhF5MjeNo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Non-linear homogenization of polymer composites with porous inclusions</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Zeka, D. ; Catapano, A. ; Mariano, P.M. ; Montemurro, M. ; Poupart, R. ; Mondain-Monval, O. ; Delcroix, J. ; Rublon, P.</creator><creatorcontrib>Zeka, D. ; Catapano, A. ; Mariano, P.M. ; Montemurro, M. ; Poupart, R. ; Mondain-Monval, O. ; Delcroix, J. ; Rublon, P.</creatorcontrib><description>We homogenize the mechanical properties of a two-phase polymer composite, made of a polyurethane matrix containing porous spherical silicone-based inclusions, and designed to be used for wave control as a local resonant insulator. First we consider a homogenized energy for the spherical inclusions, an expression obtained by an explicit method. Then, we couple inclusions and matrix by means of the second-order tangent method. Direct finite element simulations allow some comparisons with available experiments.
•Non-linear homogenisation of two-phase composite made of porous spherical inclusions•Explicit energy-based approach for homogenization of spherical inclusions•Second-order tangent method•Validation through comparison with experimental and numerical results</description><identifier>ISSN: 0167-6636</identifier><identifier>EISSN: 1872-7743</identifier><identifier>DOI: 10.1016/j.mechmat.2022.104276</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Chemical Sciences ; Finite elements ; Homogenization ; Hyperelasticity ; Material chemistry ; Metamaterials ; Multiscale modeling</subject><ispartof>Mechanics of materials, 2022-05, Vol.168, p.104276, Article 104276</ispartof><rights>2022 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-ba3690063b6378af325af3f30c4c93806620fb1a921710930c64b891dfc2a0273</citedby><cites>FETCH-LOGICAL-c390t-ba3690063b6378af325af3f30c4c93806620fb1a921710930c64b891dfc2a0273</cites><orcidid>0000-0002-3841-8408 ; 0000-0002-0504-1624 ; 0000-0001-8311-2101 ; 0000-0001-5688-3664 ; 0000-0001-7455-2703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mechmat.2022.104276$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03652773$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zeka, D.</creatorcontrib><creatorcontrib>Catapano, A.</creatorcontrib><creatorcontrib>Mariano, P.M.</creatorcontrib><creatorcontrib>Montemurro, M.</creatorcontrib><creatorcontrib>Poupart, R.</creatorcontrib><creatorcontrib>Mondain-Monval, O.</creatorcontrib><creatorcontrib>Delcroix, J.</creatorcontrib><creatorcontrib>Rublon, P.</creatorcontrib><title>Non-linear homogenization of polymer composites with porous inclusions</title><title>Mechanics of materials</title><description>We homogenize the mechanical properties of a two-phase polymer composite, made of a polyurethane matrix containing porous spherical silicone-based inclusions, and designed to be used for wave control as a local resonant insulator. First we consider a homogenized energy for the spherical inclusions, an expression obtained by an explicit method. Then, we couple inclusions and matrix by means of the second-order tangent method. Direct finite element simulations allow some comparisons with available experiments.
•Non-linear homogenisation of two-phase composite made of porous spherical inclusions•Explicit energy-based approach for homogenization of spherical inclusions•Second-order tangent method•Validation through comparison with experimental and numerical results</description><subject>Chemical Sciences</subject><subject>Finite elements</subject><subject>Homogenization</subject><subject>Hyperelasticity</subject><subject>Material chemistry</subject><subject>Metamaterials</subject><subject>Multiscale modeling</subject><issn>0167-6636</issn><issn>1872-7743</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkEFLwzAUx4MoOKcfQejVQ-dL0ibNScZwThh60XNIs8RmtM1Iusn89GZ0ePXyHvz5_R-8H0L3GGYYMHvczjqjm04NMwKEpKwgnF2gCa44yTkv6CWaJI7njFF2jW5i3AJAKUo-Qcs33-et640KWeM7_2V696MG5_vM22zn22NnQqZ9t_PRDSZm325oUh78Pmau1-0-Jjbeoiur2mjuznuKPpfPH4tVvn5_eV3M17mmAoa8VpQJAEZrRnmlLCVlGpaCLrSgFTBGwNZYCYI5BpFyVtSVwBuriQLC6RQ9jHcb1cpdcJ0KR-mVk6v5Wp4yoKwknNMDTmw5sjr4GIOxfwUM8iRObuVZnDyJk6O41HsaeyY9cnAmyKid6bXZuGD0IDfe_XPhF5MjeNo</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>Zeka, D.</creator><creator>Catapano, A.</creator><creator>Mariano, P.M.</creator><creator>Montemurro, M.</creator><creator>Poupart, R.</creator><creator>Mondain-Monval, O.</creator><creator>Delcroix, J.</creator><creator>Rublon, P.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3841-8408</orcidid><orcidid>https://orcid.org/0000-0002-0504-1624</orcidid><orcidid>https://orcid.org/0000-0001-8311-2101</orcidid><orcidid>https://orcid.org/0000-0001-5688-3664</orcidid><orcidid>https://orcid.org/0000-0001-7455-2703</orcidid></search><sort><creationdate>202205</creationdate><title>Non-linear homogenization of polymer composites with porous inclusions</title><author>Zeka, D. ; Catapano, A. ; Mariano, P.M. ; Montemurro, M. ; Poupart, R. ; Mondain-Monval, O. ; Delcroix, J. ; Rublon, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-ba3690063b6378af325af3f30c4c93806620fb1a921710930c64b891dfc2a0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chemical Sciences</topic><topic>Finite elements</topic><topic>Homogenization</topic><topic>Hyperelasticity</topic><topic>Material chemistry</topic><topic>Metamaterials</topic><topic>Multiscale modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeka, D.</creatorcontrib><creatorcontrib>Catapano, A.</creatorcontrib><creatorcontrib>Mariano, P.M.</creatorcontrib><creatorcontrib>Montemurro, M.</creatorcontrib><creatorcontrib>Poupart, R.</creatorcontrib><creatorcontrib>Mondain-Monval, O.</creatorcontrib><creatorcontrib>Delcroix, J.</creatorcontrib><creatorcontrib>Rublon, P.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mechanics of materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeka, D.</au><au>Catapano, A.</au><au>Mariano, P.M.</au><au>Montemurro, M.</au><au>Poupart, R.</au><au>Mondain-Monval, O.</au><au>Delcroix, J.</au><au>Rublon, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-linear homogenization of polymer composites with porous inclusions</atitle><jtitle>Mechanics of materials</jtitle><date>2022-05</date><risdate>2022</risdate><volume>168</volume><spage>104276</spage><pages>104276-</pages><artnum>104276</artnum><issn>0167-6636</issn><eissn>1872-7743</eissn><abstract>We homogenize the mechanical properties of a two-phase polymer composite, made of a polyurethane matrix containing porous spherical silicone-based inclusions, and designed to be used for wave control as a local resonant insulator. First we consider a homogenized energy for the spherical inclusions, an expression obtained by an explicit method. Then, we couple inclusions and matrix by means of the second-order tangent method. Direct finite element simulations allow some comparisons with available experiments.
•Non-linear homogenisation of two-phase composite made of porous spherical inclusions•Explicit energy-based approach for homogenization of spherical inclusions•Second-order tangent method•Validation through comparison with experimental and numerical results</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.mechmat.2022.104276</doi><orcidid>https://orcid.org/0000-0002-3841-8408</orcidid><orcidid>https://orcid.org/0000-0002-0504-1624</orcidid><orcidid>https://orcid.org/0000-0001-8311-2101</orcidid><orcidid>https://orcid.org/0000-0001-5688-3664</orcidid><orcidid>https://orcid.org/0000-0001-7455-2703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-6636 |
ispartof | Mechanics of materials, 2022-05, Vol.168, p.104276, Article 104276 |
issn | 0167-6636 1872-7743 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03652773v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Chemical Sciences Finite elements Homogenization Hyperelasticity Material chemistry Metamaterials Multiscale modeling |
title | Non-linear homogenization of polymer composites with porous inclusions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T06%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-linear%20homogenization%20of%20polymer%20composites%20with%20porous%20inclusions&rft.jtitle=Mechanics%20of%20materials&rft.au=Zeka,%20D.&rft.date=2022-05&rft.volume=168&rft.spage=104276&rft.pages=104276-&rft.artnum=104276&rft.issn=0167-6636&rft.eissn=1872-7743&rft_id=info:doi/10.1016/j.mechmat.2022.104276&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03652773v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0167663622000606&rfr_iscdi=true |