Shining a light on galactic outflows: photoionized outflows
We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We m...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (3), p.3133-3161 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3161 |
---|---|
container_issue | 3 |
container_start_page | 3133 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 457 |
creator | Chisholm, John Tremonti, Christy A. Leitherer, Claus Chen, Yanmei Wofford, Aida |
description | We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 < log (U) < −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow. |
doi_str_mv | 10.1093/mnras/stw178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03645188v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw178</oup_id><sourcerecordid>4066843841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgCs7pzT-g4EEF6_KSND_0NIY6YeBBPYcsa9eMrqlN69C_3s7KDh7E04MvHx7v8UXoFPA1YEVH67I2YRSaDQi5hwZAeRITxfk-GmBMk1gKgEN0FMIKY8wo4QN0-5y70pXLyESFW-ZN5MtoaQpjG2cj3zZZ4TfhJqpy33jnS_eZLnbxMTrITBHSk585RK_3dy-TaTx7enicjGexZUo1McGSS0pJapjIWMZTTs2CAONCYJtwIHMFggkrbTanCymUVBKbeQKC0oRLQofost-bm0JXtVub-kN74_R0PNPbDFPOEpDyHTp70duq9m9tGhq9dsGmRWHK1LdBgyQJY7y76R8US4FVonBHz37RlW_rsntag1CAqZJAO3XVK1v7EOo02x0LWG8L0t8F6b6gjp_33LfV3_ILkNKPaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791039813</pqid></control><display><type>article</type><title>Shining a light on galactic outflows: photoionized outflows</title><source>Oxford Journals Open Access Collection</source><creator>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</creator><creatorcontrib>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</creatorcontrib><description>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 < log (U) < −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw178</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astrophysics ; Columnar structure ; Equivalence ; Ionization ; Mathematical models ; Outflow ; Photoionization ; Sciences of the Universe ; Silicon ; Space telescopes ; Star & galaxy formation ; Stellar mass ; Ultraviolet astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-04, Vol.457 (3), p.3133-3161</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Apr 11, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</citedby><cites>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw178$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-03645188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chisholm, John</creatorcontrib><creatorcontrib>Tremonti, Christy A.</creatorcontrib><creatorcontrib>Leitherer, Claus</creatorcontrib><creatorcontrib>Chen, Yanmei</creatorcontrib><creatorcontrib>Wofford, Aida</creatorcontrib><title>Shining a light on galactic outflows: photoionized outflows</title><title>Monthly notices of the Royal Astronomical Society</title><description>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 < log (U) < −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</description><subject>Astrophysics</subject><subject>Columnar structure</subject><subject>Equivalence</subject><subject>Ionization</subject><subject>Mathematical models</subject><subject>Outflow</subject><subject>Photoionization</subject><subject>Sciences of the Universe</subject><subject>Silicon</subject><subject>Space telescopes</subject><subject>Star & galaxy formation</subject><subject>Stellar mass</subject><subject>Ultraviolet astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LwzAUB_AgCs7pzT-g4EEF6_KSND_0NIY6YeBBPYcsa9eMrqlN69C_3s7KDh7E04MvHx7v8UXoFPA1YEVH67I2YRSaDQi5hwZAeRITxfk-GmBMk1gKgEN0FMIKY8wo4QN0-5y70pXLyESFW-ZN5MtoaQpjG2cj3zZZ4TfhJqpy33jnS_eZLnbxMTrITBHSk585RK_3dy-TaTx7enicjGexZUo1McGSS0pJapjIWMZTTs2CAONCYJtwIHMFggkrbTanCymUVBKbeQKC0oRLQofost-bm0JXtVub-kN74_R0PNPbDFPOEpDyHTp70duq9m9tGhq9dsGmRWHK1LdBgyQJY7y76R8US4FVonBHz37RlW_rsntag1CAqZJAO3XVK1v7EOo02x0LWG8L0t8F6b6gjp_33LfV3_ILkNKPaw</recordid><startdate>20160411</startdate><enddate>20160411</enddate><creator>Chisholm, John</creator><creator>Tremonti, Christy A.</creator><creator>Leitherer, Claus</creator><creator>Chen, Yanmei</creator><creator>Wofford, Aida</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160411</creationdate><title>Shining a light on galactic outflows: photoionized outflows</title><author>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astrophysics</topic><topic>Columnar structure</topic><topic>Equivalence</topic><topic>Ionization</topic><topic>Mathematical models</topic><topic>Outflow</topic><topic>Photoionization</topic><topic>Sciences of the Universe</topic><topic>Silicon</topic><topic>Space telescopes</topic><topic>Star & galaxy formation</topic><topic>Stellar mass</topic><topic>Ultraviolet astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chisholm, John</creatorcontrib><creatorcontrib>Tremonti, Christy A.</creatorcontrib><creatorcontrib>Leitherer, Claus</creatorcontrib><creatorcontrib>Chen, Yanmei</creatorcontrib><creatorcontrib>Wofford, Aida</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chisholm, John</au><au>Tremonti, Christy A.</au><au>Leitherer, Claus</au><au>Chen, Yanmei</au><au>Wofford, Aida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shining a light on galactic outflows: photoionized outflows</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-04-11</date><risdate>2016</risdate><volume>457</volume><issue>3</issue><spage>3133</spage><epage>3161</epage><pages>3133-3161</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 < log (U) < −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw178</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2016-04, Vol.457 (3), p.3133-3161 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03645188v1 |
source | Oxford Journals Open Access Collection |
subjects | Astrophysics Columnar structure Equivalence Ionization Mathematical models Outflow Photoionization Sciences of the Universe Silicon Space telescopes Star & galaxy formation Stellar mass Ultraviolet astronomy |
title | Shining a light on galactic outflows: photoionized outflows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shining%20a%20light%20on%20galactic%20outflows:%20photoionized%20outflows&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Chisholm,%20John&rft.date=2016-04-11&rft.volume=457&rft.issue=3&rft.spage=3133&rft.epage=3161&rft.pages=3133-3161&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw178&rft_dat=%3Cproquest_TOX%3E4066843841%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791039813&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw178&rfr_iscdi=true |