Shining a light on galactic outflows: photoionized outflows

We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2016-04, Vol.457 (3), p.3133-3161
Hauptverfasser: Chisholm, John, Tremonti, Christy A., Leitherer, Claus, Chen, Yanmei, Wofford, Aida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3161
container_issue 3
container_start_page 3133
container_title Monthly notices of the Royal Astronomical Society
container_volume 457
creator Chisholm, John
Tremonti, Christy A.
Leitherer, Claus
Chen, Yanmei
Wofford, Aida
description We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 < log (U) < −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.
doi_str_mv 10.1093/mnras/stw178
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03645188v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw178</oup_id><sourcerecordid>4066843841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</originalsourceid><addsrcrecordid>eNqN0c9LwzAUB_AgCs7pzT-g4EEF6_KSND_0NIY6YeBBPYcsa9eMrqlN69C_3s7KDh7E04MvHx7v8UXoFPA1YEVH67I2YRSaDQi5hwZAeRITxfk-GmBMk1gKgEN0FMIKY8wo4QN0-5y70pXLyESFW-ZN5MtoaQpjG2cj3zZZ4TfhJqpy33jnS_eZLnbxMTrITBHSk585RK_3dy-TaTx7enicjGexZUo1McGSS0pJapjIWMZTTs2CAONCYJtwIHMFggkrbTanCymUVBKbeQKC0oRLQofost-bm0JXtVub-kN74_R0PNPbDFPOEpDyHTp70duq9m9tGhq9dsGmRWHK1LdBgyQJY7y76R8US4FVonBHz37RlW_rsntag1CAqZJAO3XVK1v7EOo02x0LWG8L0t8F6b6gjp_33LfV3_ILkNKPaw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1791039813</pqid></control><display><type>article</type><title>Shining a light on galactic outflows: photoionized outflows</title><source>Oxford Journals Open Access Collection</source><creator>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</creator><creatorcontrib>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</creatorcontrib><description>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 &lt; log (U) &lt; −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw178</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astrophysics ; Columnar structure ; Equivalence ; Ionization ; Mathematical models ; Outflow ; Photoionization ; Sciences of the Universe ; Silicon ; Space telescopes ; Star &amp; galaxy formation ; Stellar mass ; Ultraviolet astronomy</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2016-04, Vol.457 (3), p.3133-3161</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Apr 11, 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</citedby><cites>FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw178$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://hal.science/hal-03645188$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chisholm, John</creatorcontrib><creatorcontrib>Tremonti, Christy A.</creatorcontrib><creatorcontrib>Leitherer, Claus</creatorcontrib><creatorcontrib>Chen, Yanmei</creatorcontrib><creatorcontrib>Wofford, Aida</creatorcontrib><title>Shining a light on galactic outflows: photoionized outflows</title><title>Monthly notices of the Royal Astronomical Society</title><description>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 &lt; log (U) &lt; −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</description><subject>Astrophysics</subject><subject>Columnar structure</subject><subject>Equivalence</subject><subject>Ionization</subject><subject>Mathematical models</subject><subject>Outflow</subject><subject>Photoionization</subject><subject>Sciences of the Universe</subject><subject>Silicon</subject><subject>Space telescopes</subject><subject>Star &amp; galaxy formation</subject><subject>Stellar mass</subject><subject>Ultraviolet astronomy</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c9LwzAUB_AgCs7pzT-g4EEF6_KSND_0NIY6YeBBPYcsa9eMrqlN69C_3s7KDh7E04MvHx7v8UXoFPA1YEVH67I2YRSaDQi5hwZAeRITxfk-GmBMk1gKgEN0FMIKY8wo4QN0-5y70pXLyESFW-ZN5MtoaQpjG2cj3zZZ4TfhJqpy33jnS_eZLnbxMTrITBHSk585RK_3dy-TaTx7enicjGexZUo1McGSS0pJapjIWMZTTs2CAONCYJtwIHMFggkrbTanCymUVBKbeQKC0oRLQofost-bm0JXtVub-kN74_R0PNPbDFPOEpDyHTp70duq9m9tGhq9dsGmRWHK1LdBgyQJY7y76R8US4FVonBHz37RlW_rsntag1CAqZJAO3XVK1v7EOo02x0LWG8L0t8F6b6gjp_33LfV3_ILkNKPaw</recordid><startdate>20160411</startdate><enddate>20160411</enddate><creator>Chisholm, John</creator><creator>Tremonti, Christy A.</creator><creator>Leitherer, Claus</creator><creator>Chen, Yanmei</creator><creator>Wofford, Aida</creator><general>Oxford University Press</general><general>Oxford University Press (OUP): Policy P - Oxford Open Option A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160411</creationdate><title>Shining a light on galactic outflows: photoionized outflows</title><author>Chisholm, John ; Tremonti, Christy A. ; Leitherer, Claus ; Chen, Yanmei ; Wofford, Aida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-20868332ea47f4f6e63ad2146770c5612b91747c8cfb3d8798980ab5173356823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astrophysics</topic><topic>Columnar structure</topic><topic>Equivalence</topic><topic>Ionization</topic><topic>Mathematical models</topic><topic>Outflow</topic><topic>Photoionization</topic><topic>Sciences of the Universe</topic><topic>Silicon</topic><topic>Space telescopes</topic><topic>Star &amp; galaxy formation</topic><topic>Stellar mass</topic><topic>Ultraviolet astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chisholm, John</creatorcontrib><creatorcontrib>Tremonti, Christy A.</creatorcontrib><creatorcontrib>Leitherer, Claus</creatorcontrib><creatorcontrib>Chen, Yanmei</creatorcontrib><creatorcontrib>Wofford, Aida</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chisholm, John</au><au>Tremonti, Christy A.</au><au>Leitherer, Claus</au><au>Chen, Yanmei</au><au>Wofford, Aida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shining a light on galactic outflows: photoionized outflows</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2016-04-11</date><risdate>2016</risdate><volume>457</volume><issue>3</issue><spage>3133</spage><epage>3161</epage><pages>3133-3161</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>We study the ionization structure of galactic outflows in 37 nearby, star-forming galaxies with the Cosmic Origins Spectrograph on the Hubble Space Telescope. We use the O i, Si ii, Si iii, and Si iv ultraviolet absorption lines to characterize the different ionization states of outflowing gas. We measure the equivalent widths, line widths, and outflow velocities of the four transitions, and find shallow scaling relations between them and galactic stellar mass and star formation rate. Regardless of the ionization potential, lines of similar strength have similar velocities and line widths, indicating that the four transitions can be modelled as a comoving phase. The Si equivalent width ratios (e.g. Si iv/Si ii) have low dispersion, and little variation with stellar mass; while ratios with O i and Si vary by a factor of 2 for a given stellar mass. Photoionization models reproduce these equivalent width ratios, while shock models under predict the relative amount of high ionization gas. The photoionization models constrain the ionization parameter (U) between −2.25 &lt; log (U) &lt; −1.5, and require that the outflow metallicities are greater than 0.5 Z⊙. We derive ionization fractions for the transitions, and show that the range of ionization parameters and stellar metallicities leads to a factor of 1.15–10 variation in the ionization fractions. Historically, mass outflow rates are calculated by converting a column density measurement from a single metal ion into a total hydrogen column density using an ionization fraction, thus mass outflow rates are sensitive to the assumed ionization structure of the outflow.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw178</doi><tpages>29</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2016-04, Vol.457 (3), p.3133-3161
issn 0035-8711
1365-2966
language eng
recordid cdi_hal_primary_oai_HAL_hal_03645188v1
source Oxford Journals Open Access Collection
subjects Astrophysics
Columnar structure
Equivalence
Ionization
Mathematical models
Outflow
Photoionization
Sciences of the Universe
Silicon
Space telescopes
Star & galaxy formation
Stellar mass
Ultraviolet astronomy
title Shining a light on galactic outflows: photoionized outflows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shining%20a%20light%20on%20galactic%20outflows:%20photoionized%20outflows&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Chisholm,%20John&rft.date=2016-04-11&rft.volume=457&rft.issue=3&rft.spage=3133&rft.epage=3161&rft.pages=3133-3161&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw178&rft_dat=%3Cproquest_TOX%3E4066843841%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1791039813&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw178&rfr_iscdi=true