Protein Synthesis Driven by Dynamical Stochastic Transcription
In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2016-01, Vol.78 (1), p.110-131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 131 |
---|---|
container_issue | 1 |
container_start_page | 110 |
container_title | Bulletin of mathematical biology |
container_volume | 78 |
creator | Innocentini, Guilherme C. P. Forger, Michael Radulescu, Ovidiu Antoneli, Fernando |
description | In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population. |
doi_str_mv | 10.1007/s11538-015-0131-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03644309v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1760925088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c476t-7df73e306acd553cd5ef559e8e81ff4c8a0e3bc8f851b459bbecb8be14377e223</originalsourceid><addsrcrecordid>eNp1kUtLxDAUhYMoOj5-gBspuNFF9SZp2mQjDL5hQEFdhzRz60Q66Zh0hPn3ZqiKCC6SQPKdk3vvIeSQwhkFqM4jpYLLHKhIi9Ocb5ARFYzlqgS2SUYAiuWSFbBDdmN8g6RRXG2THVaWFXBajsjFY-h6dD57Wvl-htHF7Cq4D_RZvcquVt7MnTVt9tR3dmZi72z2HIyPNrhF7zq_T7Ya00Y8-Dr3yMvN9fPlXT55uL2_HE9yW1Rln1fTpuLIoTR2KgRPGzZCKJQoadMUVhpAXlvZSEHrQqi6RlvLGmnBqwoZ43vkdPCdmVYvgpubsNKdcfpuPNHrO-BlUXBQHzSxJwO7CN37EmOv5y5abFvjsVtGTasyzUWAlAk9_oO-dcvgUyeJEkoBV6pIFB0oG7oYAzY_FVDQ6yD0EIROQeh1EJonzdGX87Ke4_RH8T35BLABiOnJv2L49fW_rp_5XpHT</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1759903994</pqid></control><display><type>article</type><title>Protein Synthesis Driven by Dynamical Stochastic Transcription</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Innocentini, Guilherme C. P. ; Forger, Michael ; Radulescu, Ovidiu ; Antoneli, Fernando</creator><creatorcontrib>Innocentini, Guilherme C. P. ; Forger, Michael ; Radulescu, Ovidiu ; Antoneli, Fernando</creatorcontrib><description>In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-015-0131-3</identifier><identifier>PMID: 26670316</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cell Biology ; Computer Simulation ; Gene Expression ; Life Sciences ; Mathematical and Computational Biology ; Mathematical Concepts ; Mathematics ; Mathematics and Statistics ; Models, Genetic ; Original Article ; Probability ; Protein Biosynthesis - genetics ; RNA, Messenger - biosynthesis ; RNA, Messenger - genetics ; Stochastic Processes ; Transcription, Genetic</subject><ispartof>Bulletin of mathematical biology, 2016-01, Vol.78 (1), p.110-131</ispartof><rights>Society for Mathematical Biology 2015</rights><rights>Society for Mathematical Biology 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c476t-7df73e306acd553cd5ef559e8e81ff4c8a0e3bc8f851b459bbecb8be14377e223</citedby><cites>FETCH-LOGICAL-c476t-7df73e306acd553cd5ef559e8e81ff4c8a0e3bc8f851b459bbecb8be14377e223</cites><orcidid>0000-0001-6453-5707 ; 0000-0001-9179-4632</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-015-0131-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-015-0131-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26670316$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03644309$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Innocentini, Guilherme C. P.</creatorcontrib><creatorcontrib>Forger, Michael</creatorcontrib><creatorcontrib>Radulescu, Ovidiu</creatorcontrib><creatorcontrib>Antoneli, Fernando</creatorcontrib><title>Protein Synthesis Driven by Dynamical Stochastic Transcription</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.</description><subject>Cell Biology</subject><subject>Computer Simulation</subject><subject>Gene Expression</subject><subject>Life Sciences</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Concepts</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Models, Genetic</subject><subject>Original Article</subject><subject>Probability</subject><subject>Protein Biosynthesis - genetics</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - genetics</subject><subject>Stochastic Processes</subject><subject>Transcription, Genetic</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtLxDAUhYMoOj5-gBspuNFF9SZp2mQjDL5hQEFdhzRz60Q66Zh0hPn3ZqiKCC6SQPKdk3vvIeSQwhkFqM4jpYLLHKhIi9Ocb5ARFYzlqgS2SUYAiuWSFbBDdmN8g6RRXG2THVaWFXBajsjFY-h6dD57Wvl-htHF7Cq4D_RZvcquVt7MnTVt9tR3dmZi72z2HIyPNrhF7zq_T7Ya00Y8-Dr3yMvN9fPlXT55uL2_HE9yW1Rln1fTpuLIoTR2KgRPGzZCKJQoadMUVhpAXlvZSEHrQqi6RlvLGmnBqwoZ43vkdPCdmVYvgpubsNKdcfpuPNHrO-BlUXBQHzSxJwO7CN37EmOv5y5abFvjsVtGTasyzUWAlAk9_oO-dcvgUyeJEkoBV6pIFB0oG7oYAzY_FVDQ6yD0EIROQeh1EJonzdGX87Ke4_RH8T35BLABiOnJv2L49fW_rp_5XpHT</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Innocentini, Guilherme C. P.</creator><creator>Forger, Michael</creator><creator>Radulescu, Ovidiu</creator><creator>Antoneli, Fernando</creator><general>Springer US</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6453-5707</orcidid><orcidid>https://orcid.org/0000-0001-9179-4632</orcidid></search><sort><creationdate>20160101</creationdate><title>Protein Synthesis Driven by Dynamical Stochastic Transcription</title><author>Innocentini, Guilherme C. P. ; Forger, Michael ; Radulescu, Ovidiu ; Antoneli, Fernando</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c476t-7df73e306acd553cd5ef559e8e81ff4c8a0e3bc8f851b459bbecb8be14377e223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cell Biology</topic><topic>Computer Simulation</topic><topic>Gene Expression</topic><topic>Life Sciences</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Concepts</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Models, Genetic</topic><topic>Original Article</topic><topic>Probability</topic><topic>Protein Biosynthesis - genetics</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - genetics</topic><topic>Stochastic Processes</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Innocentini, Guilherme C. P.</creatorcontrib><creatorcontrib>Forger, Michael</creatorcontrib><creatorcontrib>Radulescu, Ovidiu</creatorcontrib><creatorcontrib>Antoneli, Fernando</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Innocentini, Guilherme C. P.</au><au>Forger, Michael</au><au>Radulescu, Ovidiu</au><au>Antoneli, Fernando</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Protein Synthesis Driven by Dynamical Stochastic Transcription</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>78</volume><issue>1</issue><spage>110</spage><epage>131</epage><pages>110-131</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In this manuscript, we propose a mathematical framework to couple transcription and translation in which mRNA production is described by a set of master equations, while the dynamics of protein density is governed by a random differential equation. The coupling between the two processes is given by a stochastic perturbation whose statistics satisfies the master equations. In this approach, from the knowledge of the analytical time-dependent distribution of mRNA number, we are able to calculate the dynamics of the probability density of the protein population.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26670316</pmid><doi>10.1007/s11538-015-0131-3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0001-6453-5707</orcidid><orcidid>https://orcid.org/0000-0001-9179-4632</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2016-01, Vol.78 (1), p.110-131 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03644309v1 |
source | MEDLINE; SpringerLink Journals - AutoHoldings |
subjects | Cell Biology Computer Simulation Gene Expression Life Sciences Mathematical and Computational Biology Mathematical Concepts Mathematics Mathematics and Statistics Models, Genetic Original Article Probability Protein Biosynthesis - genetics RNA, Messenger - biosynthesis RNA, Messenger - genetics Stochastic Processes Transcription, Genetic |
title | Protein Synthesis Driven by Dynamical Stochastic Transcription |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A28%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Protein%20Synthesis%20Driven%20by%20Dynamical%20Stochastic%20Transcription&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Innocentini,%20Guilherme%20C.%20P.&rft.date=2016-01-01&rft.volume=78&rft.issue=1&rft.spage=110&rft.epage=131&rft.pages=110-131&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-015-0131-3&rft_dat=%3Cproquest_hal_p%3E1760925088%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1759903994&rft_id=info:pmid/26670316&rfr_iscdi=true |