A Benefit/Cost/Deficit (BCD) model for learning from human errors

This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Reliability engineering & system safety 2011-07, Vol.96 (7), p.757-766
Hauptverfasser: Vanderhaegen, Frédéric, Zieba, Stéphane, Enjalbert, Simon, Polet, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 766
container_issue 7
container_start_page 757
container_title Reliability engineering & system safety
container_volume 96
creator Vanderhaegen, Frédéric
Zieba, Stéphane
Enjalbert, Simon
Polet, Philippe
description This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.
doi_str_mv 10.1016/j.ress.2011.02.002
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03644213v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S095183201100010X</els_id><sourcerecordid>889415019</sourcerecordid><originalsourceid>FETCH-LOGICAL-c440t-3aff1fc53d9bb414c5b03b3c73323191ead29dc359a4f941291c919f3f5b0cc53</originalsourceid><addsrcrecordid>eNp9kMFO4zAQhq0VK21heYE95YKAQ9IZ22liiUspu4BUiQucLdcZL66SGOwUibfHVRFHTjMaff8_0sfYH4QKARfzbRUppYoDYgW8AuA_2AzbRpXQisURm4GqsWwFh1_sOKUtAEhVNzO2XBbXNJLz03wV0jS_yav1U3Fxvbq5LIbQUV-4EIueTBz9-L9wMQzF824wY0Exhph-s5_O9IlOP-cJe_r393F1V64fbu9Xy3VppYSpFMY5dLYWndpsJEpbb0BshG2E4AIVkum46qyolZFOSeQKrULlhMugzbkTdnnofTa9fol-MPFdB-P13XKt9zcQCyk5ijfM7PmBfYnhdUdp0oNPlvrejBR2Sbdt_lADqkzyA2ljSCmS-6pG0Hu1eqv3avVerQaus9ocOvusN8ma3kUzWp--klxi09QLyNzVgaPs5c1T1Ml6Gi11PpKddBf8d28-AJtVjFU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>889415019</pqid></control><display><type>article</type><title>A Benefit/Cost/Deficit (BCD) model for learning from human errors</title><source>Elsevier ScienceDirect Journals</source><creator>Vanderhaegen, Frédéric ; Zieba, Stéphane ; Enjalbert, Simon ; Polet, Philippe</creator><creatorcontrib>Vanderhaegen, Frédéric ; Zieba, Stéphane ; Enjalbert, Simon ; Polet, Philippe</creatorcontrib><description>This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.</description><identifier>ISSN: 0951-8320</identifier><identifier>EISSN: 1879-0836</identifier><identifier>DOI: 10.1016/j.ress.2011.02.002</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Applied sciences ; Automatic ; BCD model ; Biological and medical sciences ; Car driving ; Case-based reasoning ; Cognition. Intelligence ; Computer Science ; Criteria ; Decision making. Choice ; Drivers ; Driving ; Engineering Sciences ; Exact sciences and technology ; Fundamental and applied biological sciences. Psychology ; Human ; Human error ; Human error prediction ; Learning ; Learning process ; Machine Learning ; Mathematical models ; Neural network ; Operational research and scientific management ; Operational research. Management science ; Psychology. Psychoanalysis. Psychiatry ; Psychology. Psychophysiology ; Reliability theory. Replacement problems ; Safety ; Violation</subject><ispartof>Reliability engineering &amp; system safety, 2011-07, Vol.96 (7), p.757-766</ispartof><rights>2011 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c440t-3aff1fc53d9bb414c5b03b3c73323191ead29dc359a4f941291c919f3f5b0cc53</citedby><cites>FETCH-LOGICAL-c440t-3aff1fc53d9bb414c5b03b3c73323191ead29dc359a4f941291c919f3f5b0cc53</cites><orcidid>0000-0002-9229-5285 ; 0000-0002-1938-752X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S095183201100010X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65534</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=24177560$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://uphf.hal.science/hal-03644213$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderhaegen, Frédéric</creatorcontrib><creatorcontrib>Zieba, Stéphane</creatorcontrib><creatorcontrib>Enjalbert, Simon</creatorcontrib><creatorcontrib>Polet, Philippe</creatorcontrib><title>A Benefit/Cost/Deficit (BCD) model for learning from human errors</title><title>Reliability engineering &amp; system safety</title><description>This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.</description><subject>Applied sciences</subject><subject>Automatic</subject><subject>BCD model</subject><subject>Biological and medical sciences</subject><subject>Car driving</subject><subject>Case-based reasoning</subject><subject>Cognition. Intelligence</subject><subject>Computer Science</subject><subject>Criteria</subject><subject>Decision making. Choice</subject><subject>Drivers</subject><subject>Driving</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Human</subject><subject>Human error</subject><subject>Human error prediction</subject><subject>Learning</subject><subject>Learning process</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Neural network</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychology. Psychophysiology</subject><subject>Reliability theory. Replacement problems</subject><subject>Safety</subject><subject>Violation</subject><issn>0951-8320</issn><issn>1879-0836</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO4zAQhq0VK21heYE95YKAQ9IZ22liiUspu4BUiQucLdcZL66SGOwUibfHVRFHTjMaff8_0sfYH4QKARfzbRUppYoDYgW8AuA_2AzbRpXQisURm4GqsWwFh1_sOKUtAEhVNzO2XBbXNJLz03wV0jS_yav1U3Fxvbq5LIbQUV-4EIueTBz9-L9wMQzF824wY0Exhph-s5_O9IlOP-cJe_r393F1V64fbu9Xy3VppYSpFMY5dLYWndpsJEpbb0BshG2E4AIVkum46qyolZFOSeQKrULlhMugzbkTdnnofTa9fol-MPFdB-P13XKt9zcQCyk5ijfM7PmBfYnhdUdp0oNPlvrejBR2Sbdt_lADqkzyA2ljSCmS-6pG0Hu1eqv3avVerQaus9ocOvusN8ma3kUzWp--klxi09QLyNzVgaPs5c1T1Ml6Gi11PpKddBf8d28-AJtVjFU</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>Vanderhaegen, Frédéric</creator><creator>Zieba, Stéphane</creator><creator>Enjalbert, Simon</creator><creator>Polet, Philippe</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9229-5285</orcidid><orcidid>https://orcid.org/0000-0002-1938-752X</orcidid></search><sort><creationdate>20110701</creationdate><title>A Benefit/Cost/Deficit (BCD) model for learning from human errors</title><author>Vanderhaegen, Frédéric ; Zieba, Stéphane ; Enjalbert, Simon ; Polet, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c440t-3aff1fc53d9bb414c5b03b3c73323191ead29dc359a4f941291c919f3f5b0cc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Applied sciences</topic><topic>Automatic</topic><topic>BCD model</topic><topic>Biological and medical sciences</topic><topic>Car driving</topic><topic>Case-based reasoning</topic><topic>Cognition. Intelligence</topic><topic>Computer Science</topic><topic>Criteria</topic><topic>Decision making. Choice</topic><topic>Drivers</topic><topic>Driving</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Human</topic><topic>Human error</topic><topic>Human error prediction</topic><topic>Learning</topic><topic>Learning process</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Neural network</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychology. Psychophysiology</topic><topic>Reliability theory. Replacement problems</topic><topic>Safety</topic><topic>Violation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderhaegen, Frédéric</creatorcontrib><creatorcontrib>Zieba, Stéphane</creatorcontrib><creatorcontrib>Enjalbert, Simon</creatorcontrib><creatorcontrib>Polet, Philippe</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Reliability engineering &amp; system safety</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderhaegen, Frédéric</au><au>Zieba, Stéphane</au><au>Enjalbert, Simon</au><au>Polet, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Benefit/Cost/Deficit (BCD) model for learning from human errors</atitle><jtitle>Reliability engineering &amp; system safety</jtitle><date>2011-07-01</date><risdate>2011</risdate><volume>96</volume><issue>7</issue><spage>757</spage><epage>766</epage><pages>757-766</pages><issn>0951-8320</issn><eissn>1879-0836</eissn><abstract>This paper proposes an original model for interpreting human errors, mainly violations, in terms of benefits, costs and potential deficits. This BCD model is then used as an input framework to learn from human errors, and two systems based on this model are developed: a case-based reasoning system and an artificial neural network system. These systems are used to predict a specific human car driving violation: not respecting the priority-to-the-right rule, which is a decision to remove a barrier. Both prediction systems learn from previous violation occurrences, using the BCD model and four criteria: safety, for identifying the deficit or the danger; and opportunity for action, driver comfort, and time spent; for identifying the benefits or the costs. The application of learning systems to predict car driving violations gives a rate over 80% of correct prediction after 10 iterations. These results are validated for the non-respect of priority-to-the-right rule.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ress.2011.02.002</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-9229-5285</orcidid><orcidid>https://orcid.org/0000-0002-1938-752X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-8320
ispartof Reliability engineering & system safety, 2011-07, Vol.96 (7), p.757-766
issn 0951-8320
1879-0836
language eng
recordid cdi_hal_primary_oai_HAL_hal_03644213v1
source Elsevier ScienceDirect Journals
subjects Applied sciences
Automatic
BCD model
Biological and medical sciences
Car driving
Case-based reasoning
Cognition. Intelligence
Computer Science
Criteria
Decision making. Choice
Drivers
Driving
Engineering Sciences
Exact sciences and technology
Fundamental and applied biological sciences. Psychology
Human
Human error
Human error prediction
Learning
Learning process
Machine Learning
Mathematical models
Neural network
Operational research and scientific management
Operational research. Management science
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reliability theory. Replacement problems
Safety
Violation
title A Benefit/Cost/Deficit (BCD) model for learning from human errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T00%3A11%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Benefit/Cost/Deficit%20(BCD)%20model%20for%20learning%20from%20human%20errors&rft.jtitle=Reliability%20engineering%20&%20system%20safety&rft.au=Vanderhaegen,%20Fr%C3%A9d%C3%A9ric&rft.date=2011-07-01&rft.volume=96&rft.issue=7&rft.spage=757&rft.epage=766&rft.pages=757-766&rft.issn=0951-8320&rft.eissn=1879-0836&rft_id=info:doi/10.1016/j.ress.2011.02.002&rft_dat=%3Cproquest_hal_p%3E889415019%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=889415019&rft_id=info:pmid/&rft_els_id=S095183201100010X&rfr_iscdi=true