On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations

We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation int...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics in computer science 2020-06, Vol.14 (2), p.281-293
Hauptverfasser: Braun, Elishan, Seiler, Werner M., Seiß, Matthias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 293
container_issue 2
container_start_page 281
container_title Mathematics in computer science
container_volume 14
creator Braun, Elishan
Seiler, Werner M.
Seiß, Matthias
description We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation into a vector field distribution on a manifold and thus reduces its analysis to standard problems in dynamical systems theory like the integration of a vector field and the determination of invariant manifolds. For the visualisation of low-dimensional situations we adapt the streamlines algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation in Matlab is discussed and some concrete examples are presented.
doi_str_mv 10.1007/s11786-019-00423-6
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03643906v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400193095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-334da89e1adf4df723a934cb3d18444c878727aaaf998f5194f98e51ae346f403</originalsourceid><addsrcrecordid>eNp9kL1OwzAURi0EEqXwAkyWmBgCduw49liVllaq6MLPaF0Sm7pKk9ZOkPr2uA0qG5OvrHM-3fshdEvJAyUkfwyU5lIkhKqEEJ6yRJyhARWCJjKV6vw05-QSXYWwJkSklNMB-ljWuF0Z_NJtjHcFVHhUQ7UPLmCoS_zuQgeVC9C6psaNxfPNtnKFa_HSl64Gv8dPzlrjTd26KE923REN1-jCQhXMze87RG_Tyet4liyWz_PxaJEULGNtwhgvQSpDobS8tHnKQDFefLKSSs55IXOZpzkAWKWkzajiVkmTUTCMC8sJG6L7PncFld56t4kr6Qacno0W-vBHmOBMEfFNI3vXs1vf7DoTWr1uOh_PDTrlJHbHiMoilfZU4ZsQvLGnWEr0oWzdl62joI9laxEl1kshwvWX8X_R_1g_I4WBHg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400193095</pqid></control><display><type>article</type><title>On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations</title><source>SpringerLink Journals - AutoHoldings</source><creator>Braun, Elishan ; Seiler, Werner M. ; Seiß, Matthias</creator><creatorcontrib>Braun, Elishan ; Seiler, Werner M. ; Seiß, Matthias</creatorcontrib><description>We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation into a vector field distribution on a manifold and thus reduces its analysis to standard problems in dynamical systems theory like the integration of a vector field and the determination of invariant manifolds. For the visualisation of low-dimensional situations we adapt the streamlines algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation in Matlab is discussed and some concrete examples are presented.</description><identifier>ISSN: 1661-8270</identifier><identifier>EISSN: 1661-8289</identifier><identifier>DOI: 10.1007/s11786-019-00423-6</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Chaos theory ; Computer Science ; Differential equations ; Differential geometry ; Dynamic systems theory ; Dynamical Systems ; Fields (mathematics) ; Manifolds (mathematics) ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Numerical integration ; Ordinary differential equations ; System theory ; Visualization</subject><ispartof>Mathematics in computer science, 2020-06, Vol.14 (2), p.281-293</ispartof><rights>Springer Nature Switzerland AG 2019</rights><rights>Springer Nature Switzerland AG 2019.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-334da89e1adf4df723a934cb3d18444c878727aaaf998f5194f98e51ae346f403</citedby><cites>FETCH-LOGICAL-c353t-334da89e1adf4df723a934cb3d18444c878727aaaf998f5194f98e51ae346f403</cites><orcidid>0000-0002-1301-2401 ; 0000-0002-0565-1334</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11786-019-00423-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11786-019-00423-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,41467,42536,51297</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03643906$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Braun, Elishan</creatorcontrib><creatorcontrib>Seiler, Werner M.</creatorcontrib><creatorcontrib>Seiß, Matthias</creatorcontrib><title>On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations</title><title>Mathematics in computer science</title><addtitle>Math.Comput.Sci</addtitle><description>We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation into a vector field distribution on a manifold and thus reduces its analysis to standard problems in dynamical systems theory like the integration of a vector field and the determination of invariant manifolds. For the visualisation of low-dimensional situations we adapt the streamlines algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation in Matlab is discussed and some concrete examples are presented.</description><subject>Algorithms</subject><subject>Chaos theory</subject><subject>Computer Science</subject><subject>Differential equations</subject><subject>Differential geometry</subject><subject>Dynamic systems theory</subject><subject>Dynamical Systems</subject><subject>Fields (mathematics)</subject><subject>Manifolds (mathematics)</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Numerical integration</subject><subject>Ordinary differential equations</subject><subject>System theory</subject><subject>Visualization</subject><issn>1661-8270</issn><issn>1661-8289</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAURi0EEqXwAkyWmBgCduw49liVllaq6MLPaF0Sm7pKk9ZOkPr2uA0qG5OvrHM-3fshdEvJAyUkfwyU5lIkhKqEEJ6yRJyhARWCJjKV6vw05-QSXYWwJkSklNMB-ljWuF0Z_NJtjHcFVHhUQ7UPLmCoS_zuQgeVC9C6psaNxfPNtnKFa_HSl64Gv8dPzlrjTd26KE923REN1-jCQhXMze87RG_Tyet4liyWz_PxaJEULGNtwhgvQSpDobS8tHnKQDFefLKSSs55IXOZpzkAWKWkzajiVkmTUTCMC8sJG6L7PncFld56t4kr6Qacno0W-vBHmOBMEfFNI3vXs1vf7DoTWr1uOh_PDTrlJHbHiMoilfZU4ZsQvLGnWEr0oWzdl62joI9laxEl1kshwvWX8X_R_1g_I4WBHg</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Braun, Elishan</creator><creator>Seiler, Werner M.</creator><creator>Seiß, Matthias</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>Springer</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1301-2401</orcidid><orcidid>https://orcid.org/0000-0002-0565-1334</orcidid></search><sort><creationdate>20200601</creationdate><title>On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations</title><author>Braun, Elishan ; Seiler, Werner M. ; Seiß, Matthias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-334da89e1adf4df723a934cb3d18444c878727aaaf998f5194f98e51ae346f403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Chaos theory</topic><topic>Computer Science</topic><topic>Differential equations</topic><topic>Differential geometry</topic><topic>Dynamic systems theory</topic><topic>Dynamical Systems</topic><topic>Fields (mathematics)</topic><topic>Manifolds (mathematics)</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Numerical integration</topic><topic>Ordinary differential equations</topic><topic>System theory</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Braun, Elishan</creatorcontrib><creatorcontrib>Seiler, Werner M.</creatorcontrib><creatorcontrib>Seiß, Matthias</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Mathematics in computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Braun, Elishan</au><au>Seiler, Werner M.</au><au>Seiß, Matthias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations</atitle><jtitle>Mathematics in computer science</jtitle><stitle>Math.Comput.Sci</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>14</volume><issue>2</issue><spage>281</spage><epage>293</epage><pages>281-293</pages><issn>1661-8270</issn><eissn>1661-8289</eissn><abstract>We discuss how the geometric theory of differential equations can be used for the numerical integration and visualisation of implicit ordinary differential equations, in particular around singularities of the equation. The Vessiot theory automatically transforms an implicit differential equation into a vector field distribution on a manifold and thus reduces its analysis to standard problems in dynamical systems theory like the integration of a vector field and the determination of invariant manifolds. For the visualisation of low-dimensional situations we adapt the streamlines algorithm of Jobard and Lefer to 2.5 and 3 dimensions. A concrete implementation in Matlab is discussed and some concrete examples are presented.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11786-019-00423-6</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1301-2401</orcidid><orcidid>https://orcid.org/0000-0002-0565-1334</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1661-8270
ispartof Mathematics in computer science, 2020-06, Vol.14 (2), p.281-293
issn 1661-8270
1661-8289
language eng
recordid cdi_hal_primary_oai_HAL_hal_03643906v1
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Chaos theory
Computer Science
Differential equations
Differential geometry
Dynamic systems theory
Dynamical Systems
Fields (mathematics)
Manifolds (mathematics)
Mathematical analysis
Mathematics
Mathematics and Statistics
Numerical analysis
Numerical integration
Ordinary differential equations
System theory
Visualization
title On the Numerical Analysis and Visualisation of Implicit Ordinary Differential Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T22%3A40%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Numerical%20Analysis%20and%20Visualisation%20of%20Implicit%20Ordinary%20Differential%20Equations&rft.jtitle=Mathematics%20in%20computer%20science&rft.au=Braun,%20Elishan&rft.date=2020-06-01&rft.volume=14&rft.issue=2&rft.spage=281&rft.epage=293&rft.pages=281-293&rft.issn=1661-8270&rft.eissn=1661-8289&rft_id=info:doi/10.1007/s11786-019-00423-6&rft_dat=%3Cproquest_hal_p%3E2400193095%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400193095&rft_id=info:pmid/&rfr_iscdi=true