Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture

The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolic engineering 2022-07, Vol.72, p.200-214
Hauptverfasser: Delmas, Valérie A., Perchat, Nadia, Monet, Oriane, Fouré, Marion, Darii, Ekatarina, Roche, David, Dubois, Ivan, Pateau, Emilie, Perret, Alain, Döring, Volker, Bouzon, Madeleine
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue
container_start_page 200
container_title Metabolic engineering
container_volume 72
creator Delmas, Valérie A.
Perchat, Nadia
Monet, Oriane
Fouré, Marion
Darii, Ekatarina
Roche, David
Dubois, Ivan
Pateau, Emilie
Perret, Alain
Döring, Volker
Bouzon, Madeleine
description The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms. •E. coli was adapted to grow on formate as sole carbon source in continuous culture.•13C-tracing proved that formate is assimilated via the reductive glycine pathway.•Point mutations in the genes folD and lpd encoding the two dehydrogenases of the pathway are essential for growth on formate.•Activity analysis of mutated FolD and Lpd revealed altered inhibition patterns.
doi_str_mv 10.1016/j.ymben.2022.03.010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03638763v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717622000465</els_id><sourcerecordid>2644359681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-2b03c9aeec1842dddf252a90a6b51e6eba6ec2910e02e18408f62cc85c0a937b3</originalsourceid><addsrcrecordid>eNp9kU9v1DAQxS0EoqXlEyAhH-Gwqf8k3uTAoapKi7RSL_RsOeMJ61ViL7az1X57HLbskZOt59_M88wj5BNnFWdc3eyq49SjrwQTomKyYpy9IZecdWq15m399nxfqwvyIaUdY5w3HX9PLmQja9614pLkB_SYHVDjLe1dAJPNeFyE3iSXaBjoEOJkMlKLe_QWfaa_YnjJ2-XtPsEWo4OtMxTC6GjK0TifKB7CeEBLnS-6z87PYU4U5jHPEa_Ju8GMCT--nlfk-fv9z7vH1ebp4cfd7WYFtWzzSvRMQmcQoYwjrLWDaITpmFF9w1FhbxSC6DhDJrAgrB2UAGgbYKaT615eka-nvlsz6n10k4lHHYzTj7cbvWhMKtmulTzwwn45sfsYfs-Ysp5cAhxH47F8XQtV17LpVLug8oRCDClFHM69OdNLNHqn_0ajl2iKiS7RlKrPrwZzP6E91_zLogDfTgCWlRwcRp3AoQe0LiJkbYP7r8EfOhGiKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2644359681</pqid></control><display><type>article</type><title>Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture</title><source>Elsevier ScienceDirect Journals</source><creator>Delmas, Valérie A. ; Perchat, Nadia ; Monet, Oriane ; Fouré, Marion ; Darii, Ekatarina ; Roche, David ; Dubois, Ivan ; Pateau, Emilie ; Perret, Alain ; Döring, Volker ; Bouzon, Madeleine</creator><creatorcontrib>Delmas, Valérie A. ; Perchat, Nadia ; Monet, Oriane ; Fouré, Marion ; Darii, Ekatarina ; Roche, David ; Dubois, Ivan ; Pateau, Emilie ; Perret, Alain ; Döring, Volker ; Bouzon, Madeleine</creatorcontrib><description>The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms. •E. coli was adapted to grow on formate as sole carbon source in continuous culture.•13C-tracing proved that formate is assimilated via the reductive glycine pathway.•Point mutations in the genes folD and lpd encoding the two dehydrogenases of the pathway are essential for growth on formate.•Activity analysis of mutated FolD and Lpd revealed altered inhibition patterns.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>EISSN: 1096-7176</identifier><identifier>DOI: 10.1016/j.ymben.2022.03.010</identifier><identifier>PMID: 35341982</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Continuous culture ; Escherichia coli ; Evolution ; Formate assimilation ; Life Sciences ; Lipoamide dehydrogenase ; Methylene-H4F dehydrogenase/cyclohydrolase ; Mutation analysis ; One carbon metabolism</subject><ispartof>Metabolic engineering, 2022-07, Vol.72, p.200-214</ispartof><rights>2022 International Metabolic Engineering Society</rights><rights>Copyright © 2022 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-2b03c9aeec1842dddf252a90a6b51e6eba6ec2910e02e18408f62cc85c0a937b3</citedby><cites>FETCH-LOGICAL-c438t-2b03c9aeec1842dddf252a90a6b51e6eba6ec2910e02e18408f62cc85c0a937b3</cites><orcidid>0000-0002-9581-6584 ; 0000-0003-2366-0311 ; 0000-0002-9453-6572 ; 0000-0002-8896-1978 ; 0000-0001-7129-8842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1096717622000465$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35341982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03638763$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Delmas, Valérie A.</creatorcontrib><creatorcontrib>Perchat, Nadia</creatorcontrib><creatorcontrib>Monet, Oriane</creatorcontrib><creatorcontrib>Fouré, Marion</creatorcontrib><creatorcontrib>Darii, Ekatarina</creatorcontrib><creatorcontrib>Roche, David</creatorcontrib><creatorcontrib>Dubois, Ivan</creatorcontrib><creatorcontrib>Pateau, Emilie</creatorcontrib><creatorcontrib>Perret, Alain</creatorcontrib><creatorcontrib>Döring, Volker</creatorcontrib><creatorcontrib>Bouzon, Madeleine</creatorcontrib><title>Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms. •E. coli was adapted to grow on formate as sole carbon source in continuous culture.•13C-tracing proved that formate is assimilated via the reductive glycine pathway.•Point mutations in the genes folD and lpd encoding the two dehydrogenases of the pathway are essential for growth on formate.•Activity analysis of mutated FolD and Lpd revealed altered inhibition patterns.</description><subject>Continuous culture</subject><subject>Escherichia coli</subject><subject>Evolution</subject><subject>Formate assimilation</subject><subject>Life Sciences</subject><subject>Lipoamide dehydrogenase</subject><subject>Methylene-H4F dehydrogenase/cyclohydrolase</subject><subject>Mutation analysis</subject><subject>One carbon metabolism</subject><issn>1096-7176</issn><issn>1096-7184</issn><issn>1096-7176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kU9v1DAQxS0EoqXlEyAhH-Gwqf8k3uTAoapKi7RSL_RsOeMJ61ViL7az1X57HLbskZOt59_M88wj5BNnFWdc3eyq49SjrwQTomKyYpy9IZecdWq15m399nxfqwvyIaUdY5w3HX9PLmQja9614pLkB_SYHVDjLe1dAJPNeFyE3iSXaBjoEOJkMlKLe_QWfaa_YnjJ2-XtPsEWo4OtMxTC6GjK0TifKB7CeEBLnS-6z87PYU4U5jHPEa_Ju8GMCT--nlfk-fv9z7vH1ebp4cfd7WYFtWzzSvRMQmcQoYwjrLWDaITpmFF9w1FhbxSC6DhDJrAgrB2UAGgbYKaT615eka-nvlsz6n10k4lHHYzTj7cbvWhMKtmulTzwwn45sfsYfs-Ysp5cAhxH47F8XQtV17LpVLug8oRCDClFHM69OdNLNHqn_0ajl2iKiS7RlKrPrwZzP6E91_zLogDfTgCWlRwcRp3AoQe0LiJkbYP7r8EfOhGiKw</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Delmas, Valérie A.</creator><creator>Perchat, Nadia</creator><creator>Monet, Oriane</creator><creator>Fouré, Marion</creator><creator>Darii, Ekatarina</creator><creator>Roche, David</creator><creator>Dubois, Ivan</creator><creator>Pateau, Emilie</creator><creator>Perret, Alain</creator><creator>Döring, Volker</creator><creator>Bouzon, Madeleine</creator><general>Elsevier Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9581-6584</orcidid><orcidid>https://orcid.org/0000-0003-2366-0311</orcidid><orcidid>https://orcid.org/0000-0002-9453-6572</orcidid><orcidid>https://orcid.org/0000-0002-8896-1978</orcidid><orcidid>https://orcid.org/0000-0001-7129-8842</orcidid></search><sort><creationdate>20220701</creationdate><title>Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture</title><author>Delmas, Valérie A. ; Perchat, Nadia ; Monet, Oriane ; Fouré, Marion ; Darii, Ekatarina ; Roche, David ; Dubois, Ivan ; Pateau, Emilie ; Perret, Alain ; Döring, Volker ; Bouzon, Madeleine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-2b03c9aeec1842dddf252a90a6b51e6eba6ec2910e02e18408f62cc85c0a937b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuous culture</topic><topic>Escherichia coli</topic><topic>Evolution</topic><topic>Formate assimilation</topic><topic>Life Sciences</topic><topic>Lipoamide dehydrogenase</topic><topic>Methylene-H4F dehydrogenase/cyclohydrolase</topic><topic>Mutation analysis</topic><topic>One carbon metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delmas, Valérie A.</creatorcontrib><creatorcontrib>Perchat, Nadia</creatorcontrib><creatorcontrib>Monet, Oriane</creatorcontrib><creatorcontrib>Fouré, Marion</creatorcontrib><creatorcontrib>Darii, Ekatarina</creatorcontrib><creatorcontrib>Roche, David</creatorcontrib><creatorcontrib>Dubois, Ivan</creatorcontrib><creatorcontrib>Pateau, Emilie</creatorcontrib><creatorcontrib>Perret, Alain</creatorcontrib><creatorcontrib>Döring, Volker</creatorcontrib><creatorcontrib>Bouzon, Madeleine</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delmas, Valérie A.</au><au>Perchat, Nadia</au><au>Monet, Oriane</au><au>Fouré, Marion</au><au>Darii, Ekatarina</au><au>Roche, David</au><au>Dubois, Ivan</au><au>Pateau, Emilie</au><au>Perret, Alain</au><au>Döring, Volker</au><au>Bouzon, Madeleine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>72</volume><spage>200</spage><epage>214</epage><pages>200-214</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><eissn>1096-7176</eissn><abstract>The reductive glycine pathway was described as the most energetically favorable synthetic route of aerobic formate assimilation. Here we report the successful implementation of formatotrophy in Escherichia coli by means of a stepwise adaptive evolution strategy. Medium swap and turbidostat regimes of continuous culture were applied to force the channeling of carbon flux through the synthetic pathway to pyruvate establishing growth on formate and CO2 as sole carbon sources. Labeling with 13C-formate proved the assimilation of the C1 substrate via the pathway metabolites. Genetic analysis of intermediate isolates revealed a mutational path followed throughout the adaptation process. Mutations were detected affecting the copy number (gene ftfL) or the coding sequence (genes folD and lpd) of genes which specify enzymes implicated in the three steps forming glycine from formate and CO2, the central metabolite of the synthetic pathway. The mutation R191S present in methylene-tetrahydrofolate dehydrogenase/cyclohydrolase (FolD) abolishes the inhibition of cyclohydrolase activity by the substrate formyl-tetrahydrofolate. The mutation R273H in lipoamide dehydrogenase (Lpd) alters substrate affinities as well as kinetics at physiological substrate concentrations likely favoring a reactional shift towards lipoamide reduction. In addition, genetic reconstructions proved the necessity of all three mutations for formate assimilation by the adapted cells. The largely unpredictable nature of these changes demonstrates the usefulness of the evolutionary approach enabling the selection of adaptive mutations crucial for pathway engineering of biotechnological model organisms. •E. coli was adapted to grow on formate as sole carbon source in continuous culture.•13C-tracing proved that formate is assimilated via the reductive glycine pathway.•Point mutations in the genes folD and lpd encoding the two dehydrogenases of the pathway are essential for growth on formate.•Activity analysis of mutated FolD and Lpd revealed altered inhibition patterns.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>35341982</pmid><doi>10.1016/j.ymben.2022.03.010</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9581-6584</orcidid><orcidid>https://orcid.org/0000-0003-2366-0311</orcidid><orcidid>https://orcid.org/0000-0002-9453-6572</orcidid><orcidid>https://orcid.org/0000-0002-8896-1978</orcidid><orcidid>https://orcid.org/0000-0001-7129-8842</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2022-07, Vol.72, p.200-214
issn 1096-7176
1096-7184
1096-7176
language eng
recordid cdi_hal_primary_oai_HAL_hal_03638763v1
source Elsevier ScienceDirect Journals
subjects Continuous culture
Escherichia coli
Evolution
Formate assimilation
Life Sciences
Lipoamide dehydrogenase
Methylene-H4F dehydrogenase/cyclohydrolase
Mutation analysis
One carbon metabolism
title Genetic and biocatalytic basis of formate dependent growth of Escherichia coli strains evolved in continuous culture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A43%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20and%20biocatalytic%20basis%20of%20formate%20dependent%20growth%20of%20Escherichia%20coli%20strains%20evolved%20in%20continuous%20culture&rft.jtitle=Metabolic%20engineering&rft.au=Delmas,%20Val%C3%A9rie%20A.&rft.date=2022-07-01&rft.volume=72&rft.spage=200&rft.epage=214&rft.pages=200-214&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2022.03.010&rft_dat=%3Cproquest_hal_p%3E2644359681%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2644359681&rft_id=info:pmid/35341982&rft_els_id=S1096717622000465&rfr_iscdi=true