Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells

Single‐material organic solar cells (SMOSCs) promise several advantages with respect to prospective applications in printed large‐area solar foils. Only one photoactive material has to be processed and the impressive thermal and photochemical long‐term stability of the devices is achieved. Herein, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar RRL 2021-01, Vol.5 (1), p.n/a
Hauptverfasser: Lucas, Sebastian, Kammerer, Jochen, Pfannmöller, Martin, Schröder, Rasmus R., He, Yakun, Li, Ning, Brabec, Christoph J., Leydecker, Tim, Samorì, Paolo, Marszalek, Tomasz, Pisula, Wojchiech, Mena‐Osteritz, Elena, Bäuerle, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page
container_title Solar RRL
container_volume 5
creator Lucas, Sebastian
Kammerer, Jochen
Pfannmöller, Martin
Schröder, Rasmus R.
He, Yakun
Li, Ning
Brabec, Christoph J.
Leydecker, Tim
Samorì, Paolo
Marszalek, Tomasz
Pisula, Wojchiech
Mena‐Osteritz, Elena
Bäuerle, Peter
description Single‐material organic solar cells (SMOSCs) promise several advantages with respect to prospective applications in printed large‐area solar foils. Only one photoactive material has to be processed and the impressive thermal and photochemical long‐term stability of the devices is achieved. Herein, a novel structural design of oligomeric donor–acceptor (D–A) dyads 1–3 is established, in which an oligothiophene donor and fullerene acceptor are covalently linked by a flexible spacer of variable length. Favorable optoelectronic, charge transport, and self‐organization properties of the D–A dyads are the basis for reaching power conversion efficiencies up to 4.26% in SMOSCs. The dependence of photovoltaic and charge transport parameters in these ambipolar semiconductors on the specific molecular structure is investigated before and after post‐treatment by solvent vapor annealing. The inner nanomorphology of the photoactive films of the dyads is analyzed with transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). Combined theoretical calculations result in a lamellar supramolecular order of the dyads with a D–A phase separation smaller than 2 nm. The molecular design and the precise distance between donor and acceptor moieties ensure the fundamental physical processes operative in organic solar cells and provide stabilization of D–A interfaces. A novel structural design of donor–acceptor dyads, in which an oligothiophene donor and fullerene acceptor are covalently linked by flexible spacer of variable length, is presented. Favorable optoelectronic, charge transport, and self‐organization properties of dyads are the basis for reaching power conversion efficiencies of 4.26% in single‐material organic solar cells, which promise advantages for printed large‐area solar foils.
doi_str_mv 10.1002/solr.202000653
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03633331v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>SOLR202000653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4293-902ecf45dd03e002688d720dc8ecb64d39282f93e67c3231997dbaa4ff801a4d3</originalsourceid><addsrcrecordid>eNqFUE1LAzEUDKJgqb163quHrfnYZjfHUqsVthRsBW8hzUeNxE1JqtJbf4LgP-wvMUulevNd3jBvZngMAJcI9hGE-Dp6F_oYYgghHZAT0MGEljli1dPpH3wOejG-JA0uirKiqAMWU--0fHMiZDe-8WG_-xpKqdcbn4itUDEzCY2NsdLqZpPNbbNyer_7nIqNDla4bBZWorEym_s2ZKSdixfgzAgXde9nd8Hj7XgxmuT17O5-NKxzWWBGcgaxlqYYKAWJTj_RqlIlhkpWWi5poQjDFTaMaFpKgglirFRLIQpjKohEunfB1SH3WTi-DvZVhC33wvLJsOYtBwkladA7Str-QSuDjzFoczQgyNsKeVshP1aYDOxg-LBOb_9R8_msfvj1fgOxoHb4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lucas, Sebastian ; Kammerer, Jochen ; Pfannmöller, Martin ; Schröder, Rasmus R. ; He, Yakun ; Li, Ning ; Brabec, Christoph J. ; Leydecker, Tim ; Samorì, Paolo ; Marszalek, Tomasz ; Pisula, Wojchiech ; Mena‐Osteritz, Elena ; Bäuerle, Peter</creator><creatorcontrib>Lucas, Sebastian ; Kammerer, Jochen ; Pfannmöller, Martin ; Schröder, Rasmus R. ; He, Yakun ; Li, Ning ; Brabec, Christoph J. ; Leydecker, Tim ; Samorì, Paolo ; Marszalek, Tomasz ; Pisula, Wojchiech ; Mena‐Osteritz, Elena ; Bäuerle, Peter</creatorcontrib><description>Single‐material organic solar cells (SMOSCs) promise several advantages with respect to prospective applications in printed large‐area solar foils. Only one photoactive material has to be processed and the impressive thermal and photochemical long‐term stability of the devices is achieved. Herein, a novel structural design of oligomeric donor–acceptor (D–A) dyads 1–3 is established, in which an oligothiophene donor and fullerene acceptor are covalently linked by a flexible spacer of variable length. Favorable optoelectronic, charge transport, and self‐organization properties of the D–A dyads are the basis for reaching power conversion efficiencies up to 4.26% in SMOSCs. The dependence of photovoltaic and charge transport parameters in these ambipolar semiconductors on the specific molecular structure is investigated before and after post‐treatment by solvent vapor annealing. The inner nanomorphology of the photoactive films of the dyads is analyzed with transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). Combined theoretical calculations result in a lamellar supramolecular order of the dyads with a D–A phase separation smaller than 2 nm. The molecular design and the precise distance between donor and acceptor moieties ensure the fundamental physical processes operative in organic solar cells and provide stabilization of D–A interfaces. A novel structural design of donor–acceptor dyads, in which an oligothiophene donor and fullerene acceptor are covalently linked by flexible spacer of variable length, is presented. Favorable optoelectronic, charge transport, and self‐organization properties of dyads are the basis for reaching power conversion efficiencies of 4.26% in single‐material organic solar cells, which promise advantages for printed large‐area solar foils.</description><identifier>ISSN: 2367-198X</identifier><identifier>EISSN: 2367-198X</identifier><identifier>DOI: 10.1002/solr.202000653</identifier><language>eng</language><publisher>Wiley</publisher><subject>ambipolar charge transport ; Chemical Sciences ; donor–acceptor dyads ; fullerenes ; Material chemistry ; oligothiophenes ; single‐material organic solar cells</subject><ispartof>Solar RRL, 2021-01, Vol.5 (1), p.n/a</ispartof><rights>2020 The Authors. Solar RRL published by Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4293-902ecf45dd03e002688d720dc8ecb64d39282f93e67c3231997dbaa4ff801a4d3</citedby><cites>FETCH-LOGICAL-c4293-902ecf45dd03e002688d720dc8ecb64d39282f93e67c3231997dbaa4ff801a4d3</cites><orcidid>0000-0003-2017-4414 ; 0000-0001-6256-8281 ; 0000-0001-6009-6831</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsolr.202000653$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsolr.202000653$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03633331$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Sebastian</creatorcontrib><creatorcontrib>Kammerer, Jochen</creatorcontrib><creatorcontrib>Pfannmöller, Martin</creatorcontrib><creatorcontrib>Schröder, Rasmus R.</creatorcontrib><creatorcontrib>He, Yakun</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Leydecker, Tim</creatorcontrib><creatorcontrib>Samorì, Paolo</creatorcontrib><creatorcontrib>Marszalek, Tomasz</creatorcontrib><creatorcontrib>Pisula, Wojchiech</creatorcontrib><creatorcontrib>Mena‐Osteritz, Elena</creatorcontrib><creatorcontrib>Bäuerle, Peter</creatorcontrib><title>Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells</title><title>Solar RRL</title><description>Single‐material organic solar cells (SMOSCs) promise several advantages with respect to prospective applications in printed large‐area solar foils. Only one photoactive material has to be processed and the impressive thermal and photochemical long‐term stability of the devices is achieved. Herein, a novel structural design of oligomeric donor–acceptor (D–A) dyads 1–3 is established, in which an oligothiophene donor and fullerene acceptor are covalently linked by a flexible spacer of variable length. Favorable optoelectronic, charge transport, and self‐organization properties of the D–A dyads are the basis for reaching power conversion efficiencies up to 4.26% in SMOSCs. The dependence of photovoltaic and charge transport parameters in these ambipolar semiconductors on the specific molecular structure is investigated before and after post‐treatment by solvent vapor annealing. The inner nanomorphology of the photoactive films of the dyads is analyzed with transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). Combined theoretical calculations result in a lamellar supramolecular order of the dyads with a D–A phase separation smaller than 2 nm. The molecular design and the precise distance between donor and acceptor moieties ensure the fundamental physical processes operative in organic solar cells and provide stabilization of D–A interfaces. A novel structural design of donor–acceptor dyads, in which an oligothiophene donor and fullerene acceptor are covalently linked by flexible spacer of variable length, is presented. Favorable optoelectronic, charge transport, and self‐organization properties of dyads are the basis for reaching power conversion efficiencies of 4.26% in single‐material organic solar cells, which promise advantages for printed large‐area solar foils.</description><subject>ambipolar charge transport</subject><subject>Chemical Sciences</subject><subject>donor–acceptor dyads</subject><subject>fullerenes</subject><subject>Material chemistry</subject><subject>oligothiophenes</subject><subject>single‐material organic solar cells</subject><issn>2367-198X</issn><issn>2367-198X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFUE1LAzEUDKJgqb163quHrfnYZjfHUqsVthRsBW8hzUeNxE1JqtJbf4LgP-wvMUulevNd3jBvZngMAJcI9hGE-Dp6F_oYYgghHZAT0MGEljli1dPpH3wOejG-JA0uirKiqAMWU--0fHMiZDe-8WG_-xpKqdcbn4itUDEzCY2NsdLqZpPNbbNyer_7nIqNDla4bBZWorEym_s2ZKSdixfgzAgXde9nd8Hj7XgxmuT17O5-NKxzWWBGcgaxlqYYKAWJTj_RqlIlhkpWWi5poQjDFTaMaFpKgglirFRLIQpjKohEunfB1SH3WTi-DvZVhC33wvLJsOYtBwkladA7Str-QSuDjzFoczQgyNsKeVshP1aYDOxg-LBOb_9R8_msfvj1fgOxoHb4</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Lucas, Sebastian</creator><creator>Kammerer, Jochen</creator><creator>Pfannmöller, Martin</creator><creator>Schröder, Rasmus R.</creator><creator>He, Yakun</creator><creator>Li, Ning</creator><creator>Brabec, Christoph J.</creator><creator>Leydecker, Tim</creator><creator>Samorì, Paolo</creator><creator>Marszalek, Tomasz</creator><creator>Pisula, Wojchiech</creator><creator>Mena‐Osteritz, Elena</creator><creator>Bäuerle, Peter</creator><general>Wiley</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2017-4414</orcidid><orcidid>https://orcid.org/0000-0001-6256-8281</orcidid><orcidid>https://orcid.org/0000-0001-6009-6831</orcidid></search><sort><creationdate>202101</creationdate><title>Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells</title><author>Lucas, Sebastian ; Kammerer, Jochen ; Pfannmöller, Martin ; Schröder, Rasmus R. ; He, Yakun ; Li, Ning ; Brabec, Christoph J. ; Leydecker, Tim ; Samorì, Paolo ; Marszalek, Tomasz ; Pisula, Wojchiech ; Mena‐Osteritz, Elena ; Bäuerle, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4293-902ecf45dd03e002688d720dc8ecb64d39282f93e67c3231997dbaa4ff801a4d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>ambipolar charge transport</topic><topic>Chemical Sciences</topic><topic>donor–acceptor dyads</topic><topic>fullerenes</topic><topic>Material chemistry</topic><topic>oligothiophenes</topic><topic>single‐material organic solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Sebastian</creatorcontrib><creatorcontrib>Kammerer, Jochen</creatorcontrib><creatorcontrib>Pfannmöller, Martin</creatorcontrib><creatorcontrib>Schröder, Rasmus R.</creatorcontrib><creatorcontrib>He, Yakun</creatorcontrib><creatorcontrib>Li, Ning</creatorcontrib><creatorcontrib>Brabec, Christoph J.</creatorcontrib><creatorcontrib>Leydecker, Tim</creatorcontrib><creatorcontrib>Samorì, Paolo</creatorcontrib><creatorcontrib>Marszalek, Tomasz</creatorcontrib><creatorcontrib>Pisula, Wojchiech</creatorcontrib><creatorcontrib>Mena‐Osteritz, Elena</creatorcontrib><creatorcontrib>Bäuerle, Peter</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Solar RRL</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Sebastian</au><au>Kammerer, Jochen</au><au>Pfannmöller, Martin</au><au>Schröder, Rasmus R.</au><au>He, Yakun</au><au>Li, Ning</au><au>Brabec, Christoph J.</au><au>Leydecker, Tim</au><au>Samorì, Paolo</au><au>Marszalek, Tomasz</au><au>Pisula, Wojchiech</au><au>Mena‐Osteritz, Elena</au><au>Bäuerle, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells</atitle><jtitle>Solar RRL</jtitle><date>2021-01</date><risdate>2021</risdate><volume>5</volume><issue>1</issue><epage>n/a</epage><issn>2367-198X</issn><eissn>2367-198X</eissn><abstract>Single‐material organic solar cells (SMOSCs) promise several advantages with respect to prospective applications in printed large‐area solar foils. Only one photoactive material has to be processed and the impressive thermal and photochemical long‐term stability of the devices is achieved. Herein, a novel structural design of oligomeric donor–acceptor (D–A) dyads 1–3 is established, in which an oligothiophene donor and fullerene acceptor are covalently linked by a flexible spacer of variable length. Favorable optoelectronic, charge transport, and self‐organization properties of the D–A dyads are the basis for reaching power conversion efficiencies up to 4.26% in SMOSCs. The dependence of photovoltaic and charge transport parameters in these ambipolar semiconductors on the specific molecular structure is investigated before and after post‐treatment by solvent vapor annealing. The inner nanomorphology of the photoactive films of the dyads is analyzed with transmission electron microscopy (TEM) and grazing‐incidence wide‐angle X‐ray scattering (GIWAXS). Combined theoretical calculations result in a lamellar supramolecular order of the dyads with a D–A phase separation smaller than 2 nm. The molecular design and the precise distance between donor and acceptor moieties ensure the fundamental physical processes operative in organic solar cells and provide stabilization of D–A interfaces. A novel structural design of donor–acceptor dyads, in which an oligothiophene donor and fullerene acceptor are covalently linked by flexible spacer of variable length, is presented. Favorable optoelectronic, charge transport, and self‐organization properties of dyads are the basis for reaching power conversion efficiencies of 4.26% in single‐material organic solar cells, which promise advantages for printed large‐area solar foils.</abstract><pub>Wiley</pub><doi>10.1002/solr.202000653</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2017-4414</orcidid><orcidid>https://orcid.org/0000-0001-6256-8281</orcidid><orcidid>https://orcid.org/0000-0001-6009-6831</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2367-198X
ispartof Solar RRL, 2021-01, Vol.5 (1), p.n/a
issn 2367-198X
2367-198X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03633331v1
source Wiley Online Library Journals Frontfile Complete
subjects ambipolar charge transport
Chemical Sciences
donor–acceptor dyads
fullerenes
Material chemistry
oligothiophenes
single‐material organic solar cells
title Molecular Donor–Acceptor Dyads for Efficient Single‐Material Organic Solar Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T14%3A59%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Donor%E2%80%93Acceptor%20Dyads%20for%20Efficient%20Single%E2%80%90Material%20Organic%20Solar%20Cells&rft.jtitle=Solar%20RRL&rft.au=Lucas,%20Sebastian&rft.date=2021-01&rft.volume=5&rft.issue=1&rft.epage=n/a&rft.issn=2367-198X&rft.eissn=2367-198X&rft_id=info:doi/10.1002/solr.202000653&rft_dat=%3Cwiley_hal_p%3ESOLR202000653%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true