Clustering by deep latent position model with graph convolutional network

With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in data analysis and classification 2024-03
Hauptverfasser: Liang, Dingge, Corneli, Marco, Bouveyron, Charles, Latouche, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Advances in data analysis and classification
container_volume
creator Liang, Dingge
Corneli, Marco
Bouveyron, Charles
Latouche, Pierre
description With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic dimension of the latent space and the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.
doi_str_mv 10.1007/s11634-024-00583-9
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03629104v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03629104v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-e3cb3d2b1bc84d8030edc8b21a5f5c8ffee1760585013c5052c5c8da7840c7513</originalsourceid><addsrcrecordid>eNqVkE9PwzAMxSMEEmPwBTjlyqFgJ02bHaeJP5MmcYFzlKbpVsiaKsk27dvTMrQ7B8vW8_OT_CPkHuERAcqniFjwPAM2FAjJs9kFmaAsWCa4EJfnOS-vyU2MXwAF5CAmZLlwu5hsaLs1rY60tranTifbJdr72KbWd3Tra-vooU0bug6631Dju713u3GpHe1sOvjwfUuuGu2ivfvrU_L58vyxeMtW76_LxXyVGY6QMstNxWtWYWVkXkvgYGsjK4ZaNMLIprEWy2L4QQByI0AwM8i1LmUOphTIp-ThlLvRTvWh3epwVF636m2-UqMGvGAzhHzP_uEdc9nJa4KPMdjmfICgRsjqBFkNkNUvZDXjP9OHbsY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Clustering by deep latent position model with graph convolutional network</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Dingge ; Corneli, Marco ; Bouveyron, Charles ; Latouche, Pierre</creator><creatorcontrib>Liang, Dingge ; Corneli, Marco ; Bouveyron, Charles ; Latouche, Pierre</creatorcontrib><description>With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic dimension of the latent space and the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.</description><identifier>ISSN: 1862-5347</identifier><identifier>EISSN: 1862-5355</identifier><identifier>DOI: 10.1007/s11634-024-00583-9</identifier><language>eng</language><publisher>Springer Verlag</publisher><subject>Applications ; Artificial Intelligence ; Computer Science ; Social and Information Networks ; Statistics</subject><ispartof>Advances in data analysis and classification, 2024-03</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c310t-e3cb3d2b1bc84d8030edc8b21a5f5c8ffee1760585013c5052c5c8da7840c7513</cites><orcidid>0000-0002-9361-0080 ; 0000-0002-6956-4491 ; 0009-0009-7398-1640</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03629104$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Dingge</creatorcontrib><creatorcontrib>Corneli, Marco</creatorcontrib><creatorcontrib>Bouveyron, Charles</creatorcontrib><creatorcontrib>Latouche, Pierre</creatorcontrib><title>Clustering by deep latent position model with graph convolutional network</title><title>Advances in data analysis and classification</title><description>With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic dimension of the latent space and the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.</description><subject>Applications</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Social and Information Networks</subject><subject>Statistics</subject><issn>1862-5347</issn><issn>1862-5355</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVkE9PwzAMxSMEEmPwBTjlyqFgJ02bHaeJP5MmcYFzlKbpVsiaKsk27dvTMrQ7B8vW8_OT_CPkHuERAcqniFjwPAM2FAjJs9kFmaAsWCa4EJfnOS-vyU2MXwAF5CAmZLlwu5hsaLs1rY60tranTifbJdr72KbWd3Tra-vooU0bug6631Dju713u3GpHe1sOvjwfUuuGu2ivfvrU_L58vyxeMtW76_LxXyVGY6QMstNxWtWYWVkXkvgYGsjK4ZaNMLIprEWy2L4QQByI0AwM8i1LmUOphTIp-ThlLvRTvWh3epwVF636m2-UqMGvGAzhHzP_uEdc9nJa4KPMdjmfICgRsjqBFkNkNUvZDXjP9OHbsY</recordid><startdate>20240312</startdate><enddate>20240312</enddate><creator>Liang, Dingge</creator><creator>Corneli, Marco</creator><creator>Bouveyron, Charles</creator><creator>Latouche, Pierre</creator><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9361-0080</orcidid><orcidid>https://orcid.org/0000-0002-6956-4491</orcidid><orcidid>https://orcid.org/0009-0009-7398-1640</orcidid></search><sort><creationdate>20240312</creationdate><title>Clustering by deep latent position model with graph convolutional network</title><author>Liang, Dingge ; Corneli, Marco ; Bouveyron, Charles ; Latouche, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-e3cb3d2b1bc84d8030edc8b21a5f5c8ffee1760585013c5052c5c8da7840c7513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Applications</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Social and Information Networks</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Dingge</creatorcontrib><creatorcontrib>Corneli, Marco</creatorcontrib><creatorcontrib>Bouveyron, Charles</creatorcontrib><creatorcontrib>Latouche, Pierre</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Advances in data analysis and classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Dingge</au><au>Corneli, Marco</au><au>Bouveyron, Charles</au><au>Latouche, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Clustering by deep latent position model with graph convolutional network</atitle><jtitle>Advances in data analysis and classification</jtitle><date>2024-03-12</date><risdate>2024</risdate><issn>1862-5347</issn><eissn>1862-5355</eissn><abstract>With the significant increase of interactions between individuals through numeric means, clustering of vertices in graphs has become a fundamental approach for analyzing large and complex networks. In this work, we propose the deep latent position model (DeepLPM), an end-to-end generative clustering approach which combines the widely used latent position model (LPM) for network analysis with a graph convolutional network (GCN) encoding strategy. Moreover, an original estimation algorithm is introduced to integrate the explicit optimization of the posterior clustering probabilities via variational inference and the implicit optimization using stochastic gradient descent for graph reconstruction. Numerical experiments on simulated scenarios highlight the ability of DeepLPM to self-penalize the evidence lower bound for selecting the intrinsic dimension of the latent space and the number of clusters, demonstrating its clustering capabilities compared to state-of-the-art methods. Finally, DeepLPM is further applied to an ecclesiastical network in Merovingian Gaul and to a citation network Cora to illustrate the practical interest in exploring large and complex real-world networks.</abstract><pub>Springer Verlag</pub><doi>10.1007/s11634-024-00583-9</doi><orcidid>https://orcid.org/0000-0002-9361-0080</orcidid><orcidid>https://orcid.org/0000-0002-6956-4491</orcidid><orcidid>https://orcid.org/0009-0009-7398-1640</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-5347
ispartof Advances in data analysis and classification, 2024-03
issn 1862-5347
1862-5355
language eng
recordid cdi_hal_primary_oai_HAL_hal_03629104v2
source SpringerLink Journals - AutoHoldings
subjects Applications
Artificial Intelligence
Computer Science
Social and Information Networks
Statistics
title Clustering by deep latent position model with graph convolutional network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T04%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Clustering%20by%20deep%20latent%20position%20model%20with%20graph%20convolutional%20network&rft.jtitle=Advances%20in%20data%20analysis%20and%20classification&rft.au=Liang,%20Dingge&rft.date=2024-03-12&rft.issn=1862-5347&rft.eissn=1862-5355&rft_id=info:doi/10.1007/s11634-024-00583-9&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03629104v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true