Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits
Premise Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion. Here we study adaptation in the short‐lived speci...
Gespeichert in:
Veröffentlicht in: | American journal of botany 2022-04, Vol.109 (4), p.602-615 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 615 |
---|---|
container_issue | 4 |
container_start_page | 602 |
container_title | American journal of botany |
container_volume | 109 |
creator | Pedro, Manuel Mayol, Maria González‐Martínez, Santiago C. Regalado, Ingrid Riba, Miquel |
description | Premise
Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion.
Here we study adaptation in the short‐lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route.
Methods
We assessed the phenological patterns of variation, and their effect on fitness‐related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level.
Results
We found significant within‐species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect.
Conclusions
Our results show the crucial role of phenological patterns in shaping adaptive clines for major life‐history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route. |
doi_str_mv | 10.1002/ajb2.1815 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03629052v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622473494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4225-f0e27e8af8a11a2f6bd127eee63dd9dd5ce2b38715dc0d3ea52d0418f2aabeba3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhS0EoqGw4AWQJTawmNb2jOeHXagKBUViU9bWnfF14mhiD7aT0h2PgMQb8iR4SCkSEivrHn8659qHkOecnXHGxDlse3HGWy4fkAWXZVMI3jUPyYLly6LjQpyQJzFu89hVnXhMTkrJ6qbjzYL8uHQHG7zboUsw0glSwuAi9YaChilBst5RMFmlAdwaKX6dwMVZtY6u0LvkdR5G79bZKKZg4xt6vcmgMTik2WnaoPOjX9shR-AhR-UAR41NDmP8-e17wBESapoC2BSfkkcGxojP7s5T8vnd5fXFVbH69P7DxXJVDJUQsjAMRYMtmBY4B2HqXvMsINal1p3WckDRl23DpR6YLhGk0KzirREAPfZQnpLXR98NjGoKdgfhVnmw6mq5UrPGylp0TIoDz-yrIzsF_2WPMamdjQOOIzj0-6hELUTVlFVXZfTlP-jW74PLL8mUlLVglSz_hg_502JAc78BZ2puVc2tqrnVzL64c9z3O9T35J8aM3B-BG7siLf_d1LLj2_Fb8tfMuuvsQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655620453</pqid></control><display><type>article</type><title>Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits</title><source>Wiley Free Content</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Pedro, Manuel ; Mayol, Maria ; González‐Martínez, Santiago C. ; Regalado, Ingrid ; Riba, Miquel</creator><creatorcontrib>Pedro, Manuel ; Mayol, Maria ; González‐Martínez, Santiago C. ; Regalado, Ingrid ; Riba, Miquel</creatorcontrib><description>Premise
Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion.
Here we study adaptation in the short‐lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route.
Methods
We assessed the phenological patterns of variation, and their effect on fitness‐related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level.
Results
We found significant within‐species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect.
Conclusions
Our results show the crucial role of phenological patterns in shaping adaptive clines for major life‐history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.</description><identifier>ISSN: 0002-9122</identifier><identifier>EISSN: 1537-2197</identifier><identifier>DOI: 10.1002/ajb2.1815</identifier><identifier>PMID: 35067917</identifier><language>eng</language><publisher>United States: Botanical Society of America, Inc</publisher><subject>Acclimatization ; Adaptation ; Adaptation, Physiological ; Aridity ; Asteraceae ; biomass allocation ; Climate change ; Clines ; Environmental Sciences ; Evolution ; expansion load ; Fitness ; Flowering ; flowering time ; Genetic diversity ; Genetic load ; Genotypes ; Germination ; Leontodon ; Leontodon longirostris ; Leontodon saxatilis ; Life history ; life‐history evolution ; phenology ; Phenotype ; Plants ; Plants (botany) ; Populations ; range expansion ; Range extension ; Reproductive fitness ; Seedlings ; Seeds ; Species ; Taxa ; Variability</subject><ispartof>American journal of botany, 2022-04, Vol.109 (4), p.602-615</ispartof><rights>2022 Botanical Society of America</rights><rights>2022 Botanical Society of America.</rights><rights>Copyright Botanical Society of America, Inc. Apr 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4225-f0e27e8af8a11a2f6bd127eee63dd9dd5ce2b38715dc0d3ea52d0418f2aabeba3</citedby><cites>FETCH-LOGICAL-c4225-f0e27e8af8a11a2f6bd127eee63dd9dd5ce2b38715dc0d3ea52d0418f2aabeba3</cites><orcidid>0000-0003-2164-9880 ; 0000-0001-8407-9083 ; 0000-0002-6694-9759 ; 0000-0002-4534-3766</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fajb2.1815$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fajb2.1815$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35067917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-03629052$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Pedro, Manuel</creatorcontrib><creatorcontrib>Mayol, Maria</creatorcontrib><creatorcontrib>González‐Martínez, Santiago C.</creatorcontrib><creatorcontrib>Regalado, Ingrid</creatorcontrib><creatorcontrib>Riba, Miquel</creatorcontrib><title>Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits</title><title>American journal of botany</title><addtitle>Am J Bot</addtitle><description>Premise
Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion.
Here we study adaptation in the short‐lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route.
Methods
We assessed the phenological patterns of variation, and their effect on fitness‐related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level.
Results
We found significant within‐species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect.
Conclusions
Our results show the crucial role of phenological patterns in shaping adaptive clines for major life‐history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.</description><subject>Acclimatization</subject><subject>Adaptation</subject><subject>Adaptation, Physiological</subject><subject>Aridity</subject><subject>Asteraceae</subject><subject>biomass allocation</subject><subject>Climate change</subject><subject>Clines</subject><subject>Environmental Sciences</subject><subject>Evolution</subject><subject>expansion load</subject><subject>Fitness</subject><subject>Flowering</subject><subject>flowering time</subject><subject>Genetic diversity</subject><subject>Genetic load</subject><subject>Genotypes</subject><subject>Germination</subject><subject>Leontodon</subject><subject>Leontodon longirostris</subject><subject>Leontodon saxatilis</subject><subject>Life history</subject><subject>life‐history evolution</subject><subject>phenology</subject><subject>Phenotype</subject><subject>Plants</subject><subject>Plants (botany)</subject><subject>Populations</subject><subject>range expansion</subject><subject>Range extension</subject><subject>Reproductive fitness</subject><subject>Seedlings</subject><subject>Seeds</subject><subject>Species</subject><subject>Taxa</subject><subject>Variability</subject><issn>0002-9122</issn><issn>1537-2197</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhS0EoqGw4AWQJTawmNb2jOeHXagKBUViU9bWnfF14mhiD7aT0h2PgMQb8iR4SCkSEivrHn8659qHkOecnXHGxDlse3HGWy4fkAWXZVMI3jUPyYLly6LjQpyQJzFu89hVnXhMTkrJ6qbjzYL8uHQHG7zboUsw0glSwuAi9YaChilBst5RMFmlAdwaKX6dwMVZtY6u0LvkdR5G79bZKKZg4xt6vcmgMTik2WnaoPOjX9shR-AhR-UAR41NDmP8-e17wBESapoC2BSfkkcGxojP7s5T8vnd5fXFVbH69P7DxXJVDJUQsjAMRYMtmBY4B2HqXvMsINal1p3WckDRl23DpR6YLhGk0KzirREAPfZQnpLXR98NjGoKdgfhVnmw6mq5UrPGylp0TIoDz-yrIzsF_2WPMamdjQOOIzj0-6hELUTVlFVXZfTlP-jW74PLL8mUlLVglSz_hg_502JAc78BZ2puVc2tqrnVzL64c9z3O9T35J8aM3B-BG7siLf_d1LLj2_Fb8tfMuuvsQ</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Pedro, Manuel</creator><creator>Mayol, Maria</creator><creator>González‐Martínez, Santiago C.</creator><creator>Regalado, Ingrid</creator><creator>Riba, Miquel</creator><general>Botanical Society of America, Inc</general><general>Botanical Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2164-9880</orcidid><orcidid>https://orcid.org/0000-0001-8407-9083</orcidid><orcidid>https://orcid.org/0000-0002-6694-9759</orcidid><orcidid>https://orcid.org/0000-0002-4534-3766</orcidid></search><sort><creationdate>202204</creationdate><title>Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits</title><author>Pedro, Manuel ; Mayol, Maria ; González‐Martínez, Santiago C. ; Regalado, Ingrid ; Riba, Miquel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4225-f0e27e8af8a11a2f6bd127eee63dd9dd5ce2b38715dc0d3ea52d0418f2aabeba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acclimatization</topic><topic>Adaptation</topic><topic>Adaptation, Physiological</topic><topic>Aridity</topic><topic>Asteraceae</topic><topic>biomass allocation</topic><topic>Climate change</topic><topic>Clines</topic><topic>Environmental Sciences</topic><topic>Evolution</topic><topic>expansion load</topic><topic>Fitness</topic><topic>Flowering</topic><topic>flowering time</topic><topic>Genetic diversity</topic><topic>Genetic load</topic><topic>Genotypes</topic><topic>Germination</topic><topic>Leontodon</topic><topic>Leontodon longirostris</topic><topic>Leontodon saxatilis</topic><topic>Life history</topic><topic>life‐history evolution</topic><topic>phenology</topic><topic>Phenotype</topic><topic>Plants</topic><topic>Plants (botany)</topic><topic>Populations</topic><topic>range expansion</topic><topic>Range extension</topic><topic>Reproductive fitness</topic><topic>Seedlings</topic><topic>Seeds</topic><topic>Species</topic><topic>Taxa</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pedro, Manuel</creatorcontrib><creatorcontrib>Mayol, Maria</creatorcontrib><creatorcontrib>González‐Martínez, Santiago C.</creatorcontrib><creatorcontrib>Regalado, Ingrid</creatorcontrib><creatorcontrib>Riba, Miquel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>American journal of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pedro, Manuel</au><au>Mayol, Maria</au><au>González‐Martínez, Santiago C.</au><au>Regalado, Ingrid</au><au>Riba, Miquel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits</atitle><jtitle>American journal of botany</jtitle><addtitle>Am J Bot</addtitle><date>2022-04</date><risdate>2022</risdate><volume>109</volume><issue>4</issue><spage>602</spage><epage>615</epage><pages>602-615</pages><issn>0002-9122</issn><eissn>1537-2197</eissn><abstract>Premise
Because of expected range shifts associated with climate change, there is a renewed interest in the evolutionary factors constraining adaptation, among which are genetic bottlenecks, drift, and increased mutational load after range expansion.
Here we study adaptation in the short‐lived species Leontodon longirostris showing reduced genetic diversity and increased genetic load along an expansion route.
Methods
We assessed the phenological patterns of variation, and their effect on fitness‐related traits, on 42 L. longirostris populations and six populations of the sister taxa L. saxatilis in a common garden located within the current range of both species. The comparison among L. longirostris populations allowed us to test for genetic clines consistent with local adaptation, whereas the comparison between taxa provided evidence for common adaptive features at the species level.
Results
We found significant within‐species variability for most traits, as well as differences with its close relative L. saxatilis. In general, seeds from drier, warmer, and unpredictable habitats showed overall lower and more restricted conditions for germination, seedlings emerged later and plants flowered earlier. Consequently, genotypes from arid and unpredictable environments attained smaller reproductive sizes and allocated more biomass to reproduction. Flowering time had the strongest direct effect on total plant size, but seedling emergence also showed an important indirect effect.
Conclusions
Our results show the crucial role of phenological patterns in shaping adaptive clines for major life‐history stage transitions. Furthermore, the genetic load observed in L. longirostris does not seem to preclude adaptation to the climatic variability encountered along the expansion route.</abstract><cop>United States</cop><pub>Botanical Society of America, Inc</pub><pmid>35067917</pmid><doi>10.1002/ajb2.1815</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2164-9880</orcidid><orcidid>https://orcid.org/0000-0001-8407-9083</orcidid><orcidid>https://orcid.org/0000-0002-6694-9759</orcidid><orcidid>https://orcid.org/0000-0002-4534-3766</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9122 |
ispartof | American journal of botany, 2022-04, Vol.109 (4), p.602-615 |
issn | 0002-9122 1537-2197 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03629052v1 |
source | Wiley Free Content; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Acclimatization Adaptation Adaptation, Physiological Aridity Asteraceae biomass allocation Climate change Clines Environmental Sciences Evolution expansion load Fitness Flowering flowering time Genetic diversity Genetic load Genotypes Germination Leontodon Leontodon longirostris Leontodon saxatilis Life history life‐history evolution phenology Phenotype Plants Plants (botany) Populations range expansion Range extension Reproductive fitness Seedlings Seeds Species Taxa Variability |
title | Environmental patterns of adaptation after range expansion in Leontodon longirostris: The effect of phenological events on fitness‐related traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A26%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Environmental%20patterns%20of%20adaptation%20after%20range%20expansion%20in%20Leontodon%20longirostris:%20The%20effect%20of%20phenological%20events%20on%20fitness%E2%80%90related%20traits&rft.jtitle=American%20journal%20of%20botany&rft.au=Pedro,%20Manuel&rft.date=2022-04&rft.volume=109&rft.issue=4&rft.spage=602&rft.epage=615&rft.pages=602-615&rft.issn=0002-9122&rft.eissn=1537-2197&rft_id=info:doi/10.1002/ajb2.1815&rft_dat=%3Cproquest_hal_p%3E2622473494%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655620453&rft_id=info:pmid/35067917&rfr_iscdi=true |