Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome

OBJECTIVE:To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in stroke patients. METHODS:White matter hyperintensity, lacunes, perivascular spaces, mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 2021-01, Vol.96 (4), p.e527-e537
Hauptverfasser: Coutureau, Juliette, Asselineau, Julien, Perez, Paul, Kuchcinski, Gregory, Sagnier, Sharmila, Renou, Pauline, Munsch, Fanny, Lopes, Renaud, Henon, Hilde, Bordet, Regis, Dousset, Vincent, Sibon, Igor, Tourdias, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e537
container_issue 4
container_start_page e527
container_title Neurology
container_volume 96
creator Coutureau, Juliette
Asselineau, Julien
Perez, Paul
Kuchcinski, Gregory
Sagnier, Sharmila
Renou, Pauline
Munsch, Fanny
Lopes, Renaud
Henon, Hilde
Bordet, Regis
Dousset, Vincent
Sibon, Igor
Tourdias, Thomas
description OBJECTIVE:To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in stroke patients. METHODS:White matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in two prospective datasets of 428 and 197 first-ever stroke patients, using MRI collected 24-to-72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3–6 month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIHSS, and infarct volume was quantified (model-1) on dataset-1, the total SVD score was added (model-2), and the improvement in predictive accuracy was evaluated. These two models were also developed in dataset-2 for replication. Finally, in model-3, the MRI features of cerebral SVD were included rather than the total SVD score. RESULTS:Model-1 showed excellent performance for discriminating poor vs. good functional outcomes (AUC=0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs, 0.750 and 0.688 respectively). A higher SVD score was associated with a poorer outcome (odds ratio=1.30 [1.07, 1.58], p=0.0090 at best for functional outcome). However, adding the total SVD score (model-2) or individual MRI features (model-3) did not improve the prediction over model-1. Results for dataset-2 were similar. CONCLUSIONS:Cerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS.
doi_str_mv 10.1212/WNL.0000000000011208
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03621713v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2460770394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4818-c54dd60de5f42bc665c6cced08f094aca6e33702ffbe550a068ac8cc641c455f3</originalsourceid><addsrcrecordid>eNqFkU9vFDEMxSMEokvhGyCUIz1MsZNMJnustrRdaWkR5Z-4RNmMRzs005Qk04pvz6y2FIkD-GLJ-r1n2Y-xlwiHKFC8-XK-OoQ_hSjAPGIzrIWutBRfH7MZgDCVNI3ZY89y_j5BtWjmT9melGiUkDhj3xaUaJ1c4JeDC4F_ppwp8OM-k8vE331Y8hNyZUyU-XHk57Hw5XCT4i3xsiH-PlHb-9LHax47fllSvCJ-MRYfB3rOnnQuZHpx3_fZp5O3Hxdn1eridLk4WlVeGTSVr1Xbamip7pRYe61rr72nFkwHc-W80yRlA6Lr1lTX4EAb5433WqFXdd3JfXaw8924YG9SP7j000bX27Ojld3OQGqBDcpbnNjXO3Y64cdIudihz55CcNcUx2yF0tA0IOdqQtUO9SnmnKh78Eaw2wTslID9O4FJ9up-w7geqH0Q_X75BJgdcBdDoZSvwnhHyW7IhbL5n7f6h3TLaURVCRAIKDRU25GRvwBNCqBh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2460770394</pqid></control><display><type>article</type><title>Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Coutureau, Juliette ; Asselineau, Julien ; Perez, Paul ; Kuchcinski, Gregory ; Sagnier, Sharmila ; Renou, Pauline ; Munsch, Fanny ; Lopes, Renaud ; Henon, Hilde ; Bordet, Regis ; Dousset, Vincent ; Sibon, Igor ; Tourdias, Thomas</creator><creatorcontrib>Coutureau, Juliette ; Asselineau, Julien ; Perez, Paul ; Kuchcinski, Gregory ; Sagnier, Sharmila ; Renou, Pauline ; Munsch, Fanny ; Lopes, Renaud ; Henon, Hilde ; Bordet, Regis ; Dousset, Vincent ; Sibon, Igor ; Tourdias, Thomas</creatorcontrib><description>OBJECTIVE:To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in stroke patients. METHODS:White matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in two prospective datasets of 428 and 197 first-ever stroke patients, using MRI collected 24-to-72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3–6 month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIHSS, and infarct volume was quantified (model-1) on dataset-1, the total SVD score was added (model-2), and the improvement in predictive accuracy was evaluated. These two models were also developed in dataset-2 for replication. Finally, in model-3, the MRI features of cerebral SVD were included rather than the total SVD score. RESULTS:Model-1 showed excellent performance for discriminating poor vs. good functional outcomes (AUC=0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs, 0.750 and 0.688 respectively). A higher SVD score was associated with a poorer outcome (odds ratio=1.30 [1.07, 1.58], p=0.0090 at best for functional outcome). However, adding the total SVD score (model-2) or individual MRI features (model-3) did not improve the prediction over model-1. Results for dataset-2 were similar. CONCLUSIONS:Cerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/WNL.0000000000011208</identifier><identifier>PMID: 33184231</identifier><language>eng</language><publisher>United States: American Academy of Neurology</publisher><subject>Aged ; Aged, 80 and over ; Cerebral Small Vessel Diseases - diagnostic imaging ; Cerebral Small Vessel Diseases - epidemiology ; Cerebral Small Vessel Diseases - psychology ; Databases, Factual - trends ; Female ; Follow-Up Studies ; Humans ; Life Sciences ; Magnetic Resonance Imaging - methods ; Magnetic Resonance Imaging - standards ; Male ; Middle Aged ; Neurons and Cognition ; Predictive Value of Tests ; Stroke - diagnostic imaging ; Stroke - epidemiology ; Stroke - psychology ; Treatment Outcome</subject><ispartof>Neurology, 2021-01, Vol.96 (4), p.e527-e537</ispartof><rights>American Academy of Neurology</rights><rights>2020 American Academy of Neurology</rights><rights>2020 American Academy of Neurology.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4818-c54dd60de5f42bc665c6cced08f094aca6e33702ffbe550a068ac8cc641c455f3</citedby><cites>FETCH-LOGICAL-c4818-c54dd60de5f42bc665c6cced08f094aca6e33702ffbe550a068ac8cc641c455f3</cites><orcidid>0000-0002-2425-2283 ; 0000-0002-7151-6325 ; 0000-0003-3916-6422 ; 0000-0002-1171-4215 ; 0000-0001-9479-3598</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33184231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03621713$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Coutureau, Juliette</creatorcontrib><creatorcontrib>Asselineau, Julien</creatorcontrib><creatorcontrib>Perez, Paul</creatorcontrib><creatorcontrib>Kuchcinski, Gregory</creatorcontrib><creatorcontrib>Sagnier, Sharmila</creatorcontrib><creatorcontrib>Renou, Pauline</creatorcontrib><creatorcontrib>Munsch, Fanny</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Henon, Hilde</creatorcontrib><creatorcontrib>Bordet, Regis</creatorcontrib><creatorcontrib>Dousset, Vincent</creatorcontrib><creatorcontrib>Sibon, Igor</creatorcontrib><creatorcontrib>Tourdias, Thomas</creatorcontrib><title>Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome</title><title>Neurology</title><addtitle>Neurology</addtitle><description>OBJECTIVE:To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in stroke patients. METHODS:White matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in two prospective datasets of 428 and 197 first-ever stroke patients, using MRI collected 24-to-72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3–6 month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIHSS, and infarct volume was quantified (model-1) on dataset-1, the total SVD score was added (model-2), and the improvement in predictive accuracy was evaluated. These two models were also developed in dataset-2 for replication. Finally, in model-3, the MRI features of cerebral SVD were included rather than the total SVD score. RESULTS:Model-1 showed excellent performance for discriminating poor vs. good functional outcomes (AUC=0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs, 0.750 and 0.688 respectively). A higher SVD score was associated with a poorer outcome (odds ratio=1.30 [1.07, 1.58], p=0.0090 at best for functional outcome). However, adding the total SVD score (model-2) or individual MRI features (model-3) did not improve the prediction over model-1. Results for dataset-2 were similar. CONCLUSIONS:Cerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS.</description><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Cerebral Small Vessel Diseases - diagnostic imaging</subject><subject>Cerebral Small Vessel Diseases - epidemiology</subject><subject>Cerebral Small Vessel Diseases - psychology</subject><subject>Databases, Factual - trends</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>Magnetic Resonance Imaging - standards</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Neurons and Cognition</subject><subject>Predictive Value of Tests</subject><subject>Stroke - diagnostic imaging</subject><subject>Stroke - epidemiology</subject><subject>Stroke - psychology</subject><subject>Treatment Outcome</subject><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU9vFDEMxSMEokvhGyCUIz1MsZNMJnustrRdaWkR5Z-4RNmMRzs005Qk04pvz6y2FIkD-GLJ-r1n2Y-xlwiHKFC8-XK-OoQ_hSjAPGIzrIWutBRfH7MZgDCVNI3ZY89y_j5BtWjmT9melGiUkDhj3xaUaJ1c4JeDC4F_ppwp8OM-k8vE331Y8hNyZUyU-XHk57Hw5XCT4i3xsiH-PlHb-9LHax47fllSvCJ-MRYfB3rOnnQuZHpx3_fZp5O3Hxdn1eridLk4WlVeGTSVr1Xbamip7pRYe61rr72nFkwHc-W80yRlA6Lr1lTX4EAb5433WqFXdd3JfXaw8924YG9SP7j000bX27Ojld3OQGqBDcpbnNjXO3Y64cdIudihz55CcNcUx2yF0tA0IOdqQtUO9SnmnKh78Eaw2wTslID9O4FJ9up-w7geqH0Q_X75BJgdcBdDoZSvwnhHyW7IhbL5n7f6h3TLaURVCRAIKDRU25GRvwBNCqBh</recordid><startdate>20210126</startdate><enddate>20210126</enddate><creator>Coutureau, Juliette</creator><creator>Asselineau, Julien</creator><creator>Perez, Paul</creator><creator>Kuchcinski, Gregory</creator><creator>Sagnier, Sharmila</creator><creator>Renou, Pauline</creator><creator>Munsch, Fanny</creator><creator>Lopes, Renaud</creator><creator>Henon, Hilde</creator><creator>Bordet, Regis</creator><creator>Dousset, Vincent</creator><creator>Sibon, Igor</creator><creator>Tourdias, Thomas</creator><general>American Academy of Neurology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0002-7151-6325</orcidid><orcidid>https://orcid.org/0000-0003-3916-6422</orcidid><orcidid>https://orcid.org/0000-0002-1171-4215</orcidid><orcidid>https://orcid.org/0000-0001-9479-3598</orcidid></search><sort><creationdate>20210126</creationdate><title>Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome</title><author>Coutureau, Juliette ; Asselineau, Julien ; Perez, Paul ; Kuchcinski, Gregory ; Sagnier, Sharmila ; Renou, Pauline ; Munsch, Fanny ; Lopes, Renaud ; Henon, Hilde ; Bordet, Regis ; Dousset, Vincent ; Sibon, Igor ; Tourdias, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4818-c54dd60de5f42bc665c6cced08f094aca6e33702ffbe550a068ac8cc641c455f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Cerebral Small Vessel Diseases - diagnostic imaging</topic><topic>Cerebral Small Vessel Diseases - epidemiology</topic><topic>Cerebral Small Vessel Diseases - psychology</topic><topic>Databases, Factual - trends</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>Magnetic Resonance Imaging - standards</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Neurons and Cognition</topic><topic>Predictive Value of Tests</topic><topic>Stroke - diagnostic imaging</topic><topic>Stroke - epidemiology</topic><topic>Stroke - psychology</topic><topic>Treatment Outcome</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Coutureau, Juliette</creatorcontrib><creatorcontrib>Asselineau, Julien</creatorcontrib><creatorcontrib>Perez, Paul</creatorcontrib><creatorcontrib>Kuchcinski, Gregory</creatorcontrib><creatorcontrib>Sagnier, Sharmila</creatorcontrib><creatorcontrib>Renou, Pauline</creatorcontrib><creatorcontrib>Munsch, Fanny</creatorcontrib><creatorcontrib>Lopes, Renaud</creatorcontrib><creatorcontrib>Henon, Hilde</creatorcontrib><creatorcontrib>Bordet, Regis</creatorcontrib><creatorcontrib>Dousset, Vincent</creatorcontrib><creatorcontrib>Sibon, Igor</creatorcontrib><creatorcontrib>Tourdias, Thomas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Coutureau, Juliette</au><au>Asselineau, Julien</au><au>Perez, Paul</au><au>Kuchcinski, Gregory</au><au>Sagnier, Sharmila</au><au>Renou, Pauline</au><au>Munsch, Fanny</au><au>Lopes, Renaud</au><au>Henon, Hilde</au><au>Bordet, Regis</au><au>Dousset, Vincent</au><au>Sibon, Igor</au><au>Tourdias, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2021-01-26</date><risdate>2021</risdate><volume>96</volume><issue>4</issue><spage>e527</spage><epage>e537</epage><pages>e527-e537</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><abstract>OBJECTIVE:To determine whether the total small vessel disease (SVD) score adds information to the prediction of stroke outcome compared to validated predictors, we tested different predictive models of outcome in stroke patients. METHODS:White matter hyperintensity, lacunes, perivascular spaces, microbleeds, and atrophy were quantified in two prospective datasets of 428 and 197 first-ever stroke patients, using MRI collected 24-to-72 hours after stroke onset. Functional, cognitive, and psychological status were assessed at the 3–6 month follow-up. The predictive accuracy (in terms of calibration and discrimination) of age, baseline NIHSS, and infarct volume was quantified (model-1) on dataset-1, the total SVD score was added (model-2), and the improvement in predictive accuracy was evaluated. These two models were also developed in dataset-2 for replication. Finally, in model-3, the MRI features of cerebral SVD were included rather than the total SVD score. RESULTS:Model-1 showed excellent performance for discriminating poor vs. good functional outcomes (AUC=0.915), and fair performance for identifying cognitively impaired and depressed patients (AUCs, 0.750 and 0.688 respectively). A higher SVD score was associated with a poorer outcome (odds ratio=1.30 [1.07, 1.58], p=0.0090 at best for functional outcome). However, adding the total SVD score (model-2) or individual MRI features (model-3) did not improve the prediction over model-1. Results for dataset-2 were similar. CONCLUSIONS:Cerebral SVD was independently associated with functional, cognitive, and psychological outcomes, but had no clinically relevant added value to predict the individual outcomes of patients when compared to the usual predictors, such as age and baseline NIHSS.</abstract><cop>United States</cop><pub>American Academy of Neurology</pub><pmid>33184231</pmid><doi>10.1212/WNL.0000000000011208</doi><orcidid>https://orcid.org/0000-0002-2425-2283</orcidid><orcidid>https://orcid.org/0000-0002-7151-6325</orcidid><orcidid>https://orcid.org/0000-0003-3916-6422</orcidid><orcidid>https://orcid.org/0000-0002-1171-4215</orcidid><orcidid>https://orcid.org/0000-0001-9479-3598</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3878
ispartof Neurology, 2021-01, Vol.96 (4), p.e527-e537
issn 0028-3878
1526-632X
language eng
recordid cdi_hal_primary_oai_HAL_hal_03621713v1
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Aged
Aged, 80 and over
Cerebral Small Vessel Diseases - diagnostic imaging
Cerebral Small Vessel Diseases - epidemiology
Cerebral Small Vessel Diseases - psychology
Databases, Factual - trends
Female
Follow-Up Studies
Humans
Life Sciences
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
Male
Middle Aged
Neurons and Cognition
Predictive Value of Tests
Stroke - diagnostic imaging
Stroke - epidemiology
Stroke - psychology
Treatment Outcome
title Cerebral Small Vessel Disease MRI Features Do Not Improve the Prediction of Stroke Outcome
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T03%3A34%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cerebral%20Small%20Vessel%20Disease%20MRI%20Features%20Do%20Not%20Improve%20the%20Prediction%20of%20Stroke%20Outcome&rft.jtitle=Neurology&rft.au=Coutureau,%20Juliette&rft.date=2021-01-26&rft.volume=96&rft.issue=4&rft.spage=e527&rft.epage=e537&rft.pages=e527-e537&rft.issn=0028-3878&rft.eissn=1526-632X&rft_id=info:doi/10.1212/WNL.0000000000011208&rft_dat=%3Cproquest_hal_p%3E2460770394%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2460770394&rft_id=info:pmid/33184231&rfr_iscdi=true