Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles
In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneou...
Gespeichert in:
Veröffentlicht in: | Journal of symbolic computation 2023-05, Vol.116, p.345-364 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 364 |
---|---|
container_issue | |
container_start_page | 345 |
container_title | Journal of symbolic computation |
container_volume | 116 |
creator | Guerrini, Eleonora Lairedj, Kamel Lebreton, Romain Zappatore, Ilaria |
description | In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneous Rational Function Reconstruction with errors and multiprecision evaluations. From an error correcting codes point of view, this problem is related to the decoding of some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes. We give conditions on the inputs of the problem which guarantee the uniqueness of the interpolant.
Since we deal with rational functions, some evaluation points may be poles: a first contribution of this work is to correct any error in a scenario with poles and multiplicities that extends (Kaltofen et al., 2020). Our second contribution is to adapt rational function reconstruction for random errors, and provide better conditions for uniqueness using interleaving techniques as in (Guerrini et al., 2021). |
doi_str_mv | 10.1016/j.jsc.2022.10.007 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03620179v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0747717122001043</els_id><sourcerecordid>S0747717122001043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c326t-10020dbb37cb8201d89d9601ce3342d46b2633e28c50df0e2b0df71495732ca53</originalsourceid><addsrcrecordid>eNp9UEFLwzAYDaLgnP4Ab7l66PyStE2rpzGcEwbCVPAghDTJXErXjKSd-O9NqXj09L73eO_B9xC6JjAjQPLbelYHNaNAaeQzAH6CJgTKLCmy7P0UTYCnPOGEk3N0EUINAGXKsgn6eLH7vulka1wf8EZ21rWywcu-VcOJN0a5NnS-H-mX7XbYeO98uMMr2erGtp94aLCHxirbWRNwlPHBNSZcorOtbIK5-sUpels-vC5Wyfr58WkxXyeK0bxLCAAFXVWMq6qgQHRR6jIHogxjKdVpXtGcMUMLlYHegqFVBE7SMuOMKpmxKboZe3eyEQdv99J_CyetWM3XYtCA5bGXl0cSvWT0Ku9C8Gb7FyAghilFLeKUYphykOKUMXM_Zkx84miNF0FZ0yqjrTeqE9rZf9I_vd18yg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles</title><source>Elsevier ScienceDirect Journals</source><creator>Guerrini, Eleonora ; Lairedj, Kamel ; Lebreton, Romain ; Zappatore, Ilaria</creator><creatorcontrib>Guerrini, Eleonora ; Lairedj, Kamel ; Lebreton, Romain ; Zappatore, Ilaria</creatorcontrib><description>In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneous Rational Function Reconstruction with errors and multiprecision evaluations. From an error correcting codes point of view, this problem is related to the decoding of some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes. We give conditions on the inputs of the problem which guarantee the uniqueness of the interpolant.
Since we deal with rational functions, some evaluation points may be poles: a first contribution of this work is to correct any error in a scenario with poles and multiplicities that extends (Kaltofen et al., 2020). Our second contribution is to adapt rational function reconstruction for random errors, and provide better conditions for uniqueness using interleaving techniques as in (Guerrini et al., 2021).</description><identifier>ISSN: 0747-7171</identifier><identifier>EISSN: 1095-855X</identifier><identifier>DOI: 10.1016/j.jsc.2022.10.007</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Cauchy interpolation with poles ; Computer Science ; Hermite interpolation ; Interleaved Reed-Solomon codes ; Mathematics ; Multiplicity codes ; Simultaneous rational function reconstruction</subject><ispartof>Journal of symbolic computation, 2023-05, Vol.116, p.345-364</ispartof><rights>2022 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c326t-10020dbb37cb8201d89d9601ce3342d46b2633e28c50df0e2b0df71495732ca53</cites><orcidid>0009-0001-4851-5789 ; 0000-0002-0880-1190 ; 0009-0000-8868-0298</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0747717122001043$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03620179$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Lairedj, Kamel</creatorcontrib><creatorcontrib>Lebreton, Romain</creatorcontrib><creatorcontrib>Zappatore, Ilaria</creatorcontrib><title>Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles</title><title>Journal of symbolic computation</title><description>In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneous Rational Function Reconstruction with errors and multiprecision evaluations. From an error correcting codes point of view, this problem is related to the decoding of some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes. We give conditions on the inputs of the problem which guarantee the uniqueness of the interpolant.
Since we deal with rational functions, some evaluation points may be poles: a first contribution of this work is to correct any error in a scenario with poles and multiplicities that extends (Kaltofen et al., 2020). Our second contribution is to adapt rational function reconstruction for random errors, and provide better conditions for uniqueness using interleaving techniques as in (Guerrini et al., 2021).</description><subject>Cauchy interpolation with poles</subject><subject>Computer Science</subject><subject>Hermite interpolation</subject><subject>Interleaved Reed-Solomon codes</subject><subject>Mathematics</subject><subject>Multiplicity codes</subject><subject>Simultaneous rational function reconstruction</subject><issn>0747-7171</issn><issn>1095-855X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9UEFLwzAYDaLgnP4Ab7l66PyStE2rpzGcEwbCVPAghDTJXErXjKSd-O9NqXj09L73eO_B9xC6JjAjQPLbelYHNaNAaeQzAH6CJgTKLCmy7P0UTYCnPOGEk3N0EUINAGXKsgn6eLH7vulka1wf8EZ21rWywcu-VcOJN0a5NnS-H-mX7XbYeO98uMMr2erGtp94aLCHxirbWRNwlPHBNSZcorOtbIK5-sUpels-vC5Wyfr58WkxXyeK0bxLCAAFXVWMq6qgQHRR6jIHogxjKdVpXtGcMUMLlYHegqFVBE7SMuOMKpmxKboZe3eyEQdv99J_CyetWM3XYtCA5bGXl0cSvWT0Ku9C8Gb7FyAghilFLeKUYphykOKUMXM_Zkx84miNF0FZ0yqjrTeqE9rZf9I_vd18yg</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Guerrini, Eleonora</creator><creator>Lairedj, Kamel</creator><creator>Lebreton, Romain</creator><creator>Zappatore, Ilaria</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid><orcidid>https://orcid.org/0000-0002-0880-1190</orcidid><orcidid>https://orcid.org/0009-0000-8868-0298</orcidid></search><sort><creationdate>20230501</creationdate><title>Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles</title><author>Guerrini, Eleonora ; Lairedj, Kamel ; Lebreton, Romain ; Zappatore, Ilaria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c326t-10020dbb37cb8201d89d9601ce3342d46b2633e28c50df0e2b0df71495732ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Cauchy interpolation with poles</topic><topic>Computer Science</topic><topic>Hermite interpolation</topic><topic>Interleaved Reed-Solomon codes</topic><topic>Mathematics</topic><topic>Multiplicity codes</topic><topic>Simultaneous rational function reconstruction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrini, Eleonora</creatorcontrib><creatorcontrib>Lairedj, Kamel</creatorcontrib><creatorcontrib>Lebreton, Romain</creatorcontrib><creatorcontrib>Zappatore, Ilaria</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of symbolic computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrini, Eleonora</au><au>Lairedj, Kamel</au><au>Lebreton, Romain</au><au>Zappatore, Ilaria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles</atitle><jtitle>Journal of symbolic computation</jtitle><date>2023-05-01</date><risdate>2023</risdate><volume>116</volume><spage>345</spage><epage>364</epage><pages>345-364</pages><issn>0747-7171</issn><eissn>1095-855X</eissn><abstract>In this paper, we focus on extensions of methods for interpolating rational functions from their evaluations, in the context of erroneous evaluations. This problem can be seen both from a computer algebra and a coding theory point of view. In computer algebra, this is a generalization of Simultaneous Rational Function Reconstruction with errors and multiprecision evaluations. From an error correcting codes point of view, this problem is related to the decoding of some algebraic codes such as Reed-Solomon, Derivatives or Multiplicity codes. We give conditions on the inputs of the problem which guarantee the uniqueness of the interpolant.
Since we deal with rational functions, some evaluation points may be poles: a first contribution of this work is to correct any error in a scenario with poles and multiplicities that extends (Kaltofen et al., 2020). Our second contribution is to adapt rational function reconstruction for random errors, and provide better conditions for uniqueness using interleaving techniques as in (Guerrini et al., 2021).</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsc.2022.10.007</doi><tpages>20</tpages><orcidid>https://orcid.org/0009-0001-4851-5789</orcidid><orcidid>https://orcid.org/0000-0002-0880-1190</orcidid><orcidid>https://orcid.org/0009-0000-8868-0298</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0747-7171 |
ispartof | Journal of symbolic computation, 2023-05, Vol.116, p.345-364 |
issn | 0747-7171 1095-855X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03620179v1 |
source | Elsevier ScienceDirect Journals |
subjects | Cauchy interpolation with poles Computer Science Hermite interpolation Interleaved Reed-Solomon codes Mathematics Multiplicity codes Simultaneous rational function reconstruction |
title | Simultaneous Rational Function Reconstruction with errors: Handling multiplicities and poles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T01%3A41%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simultaneous%20Rational%20Function%20Reconstruction%20with%20errors:%20Handling%20multiplicities%20and%20poles&rft.jtitle=Journal%20of%20symbolic%20computation&rft.au=Guerrini,%20Eleonora&rft.date=2023-05-01&rft.volume=116&rft.spage=345&rft.epage=364&rft.pages=345-364&rft.issn=0747-7171&rft.eissn=1095-855X&rft_id=info:doi/10.1016/j.jsc.2022.10.007&rft_dat=%3Celsevier_hal_p%3ES0747717122001043%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0747717122001043&rfr_iscdi=true |