An approximation algorithm for the k-fixed depots problem
•The k-DHPP, in a cubic graph with 2-vertex-connected, is studied.•We establish a new approximation algorithm (with 5/3-approximation).•A shortest tour in a factor critical and 2-vertex connected graph is considered.•A polynomial approximation algorithm (with 7/6-approximation ratio) is established....
Gespeichert in:
Veröffentlicht in: | Computers & industrial engineering 2017-09, Vol.111, p.50-55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Computers & industrial engineering |
container_volume | 111 |
creator | Giannakos, A. Hifi, M. Kheffache, R. Ouafi, R. |
description | •The k-DHPP, in a cubic graph with 2-vertex-connected, is studied.•We establish a new approximation algorithm (with 5/3-approximation).•A shortest tour in a factor critical and 2-vertex connected graph is considered.•A polynomial approximation algorithm (with 7/6-approximation ratio) is established.
In this paper, we consider the k-Depots Hamiltonian Path Problem (k-DHPP) of searching k paths in a graph G, starting from k fixed vertices and spanning all the vertices of G. We propose an approximation algorithm for solving the k-DHPP, where the underlying graph is cubic and 2-vertex-connected. Then, we prove the existence of a 53-approximation algorithm that gives a solution with total cost at most 53n-4k-23. In this case, the proposed method is based upon searching for a perfect matching, constructing an Eulerian graph and finally a k paths solution, following the process of removing/adding edges. We also present an approximation algorithm for finding a shortest tour passing through all vertices in a factor-critical and 2-vertex connected graph. The proposed algorithm achieves a 76-approximation ratio where the principle of the method is based on decomposing the graph into a series of ears. |
doi_str_mv | 10.1016/j.cie.2017.06.022 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03617899v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360835217302747</els_id><sourcerecordid>oai_HAL_hal_03617899v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-cb848c2a4cd836ef7d1e21737f7eb56bd609846fc9c9ad20f4db1e9ebbe852bc3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wNtePew6ye7mA0-l-AUFL3oOm2RiU7fNkl1K_femVDx6GmZ43mHmIeSWQkWB8vtNZQNWDKiogFfA2BmZUSlUCW0L52QGNYdS1i27JFfjuAGAplV0RtRiV3TDkOIhbLspxNz1nzGFab0tfEzFtMbiq_ThgK5wOMRpLDJsetxekwvf9SPe_NY5-Xh6fF--lKu359flYlXauqZTaY1spGVdY52sOXrhKDIqauEFmpYbx0HJhnurrOocA984Q1GhMShbZmw9J3enveuu10PKZ6ZvHbugXxYrfZzl16iQSu1pZumJtSmOY0L_F6Cgj570RmdP-uhJA9fZU848nDKYn9gHTHrMyM6iCwntpF0M_6R_AJDwcFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An approximation algorithm for the k-fixed depots problem</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Giannakos, A. ; Hifi, M. ; Kheffache, R. ; Ouafi, R.</creator><creatorcontrib>Giannakos, A. ; Hifi, M. ; Kheffache, R. ; Ouafi, R.</creatorcontrib><description>•The k-DHPP, in a cubic graph with 2-vertex-connected, is studied.•We establish a new approximation algorithm (with 5/3-approximation).•A shortest tour in a factor critical and 2-vertex connected graph is considered.•A polynomial approximation algorithm (with 7/6-approximation ratio) is established.
In this paper, we consider the k-Depots Hamiltonian Path Problem (k-DHPP) of searching k paths in a graph G, starting from k fixed vertices and spanning all the vertices of G. We propose an approximation algorithm for solving the k-DHPP, where the underlying graph is cubic and 2-vertex-connected. Then, we prove the existence of a 53-approximation algorithm that gives a solution with total cost at most 53n-4k-23. In this case, the proposed method is based upon searching for a perfect matching, constructing an Eulerian graph and finally a k paths solution, following the process of removing/adding edges. We also present an approximation algorithm for finding a shortest tour passing through all vertices in a factor-critical and 2-vertex connected graph. The proposed algorithm achieves a 76-approximation ratio where the principle of the method is based on decomposing the graph into a series of ears.</description><identifier>ISSN: 0360-8352</identifier><identifier>EISSN: 1879-0550</identifier><identifier>DOI: 10.1016/j.cie.2017.06.022</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Computer Science ; Cubic ; Factor-critical ; k-Depots ; TSP</subject><ispartof>Computers & industrial engineering, 2017-09, Vol.111, p.50-55</ispartof><rights>2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c331t-cb848c2a4cd836ef7d1e21737f7eb56bd609846fc9c9ad20f4db1e9ebbe852bc3</citedby><cites>FETCH-LOGICAL-c331t-cb848c2a4cd836ef7d1e21737f7eb56bd609846fc9c9ad20f4db1e9ebbe852bc3</cites><orcidid>0000-0001-9983-0028 ; 0000-0002-1031-7701</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0360835217302747$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://u-picardie.hal.science/hal-03617899$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Hifi, M.</creatorcontrib><creatorcontrib>Kheffache, R.</creatorcontrib><creatorcontrib>Ouafi, R.</creatorcontrib><title>An approximation algorithm for the k-fixed depots problem</title><title>Computers & industrial engineering</title><description>•The k-DHPP, in a cubic graph with 2-vertex-connected, is studied.•We establish a new approximation algorithm (with 5/3-approximation).•A shortest tour in a factor critical and 2-vertex connected graph is considered.•A polynomial approximation algorithm (with 7/6-approximation ratio) is established.
In this paper, we consider the k-Depots Hamiltonian Path Problem (k-DHPP) of searching k paths in a graph G, starting from k fixed vertices and spanning all the vertices of G. We propose an approximation algorithm for solving the k-DHPP, where the underlying graph is cubic and 2-vertex-connected. Then, we prove the existence of a 53-approximation algorithm that gives a solution with total cost at most 53n-4k-23. In this case, the proposed method is based upon searching for a perfect matching, constructing an Eulerian graph and finally a k paths solution, following the process of removing/adding edges. We also present an approximation algorithm for finding a shortest tour passing through all vertices in a factor-critical and 2-vertex connected graph. The proposed algorithm achieves a 76-approximation ratio where the principle of the method is based on decomposing the graph into a series of ears.</description><subject>Approximation</subject><subject>Computer Science</subject><subject>Cubic</subject><subject>Factor-critical</subject><subject>k-Depots</subject><subject>TSP</subject><issn>0360-8352</issn><issn>1879-0550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wNtePew6ye7mA0-l-AUFL3oOm2RiU7fNkl1K_femVDx6GmZ43mHmIeSWQkWB8vtNZQNWDKiogFfA2BmZUSlUCW0L52QGNYdS1i27JFfjuAGAplV0RtRiV3TDkOIhbLspxNz1nzGFab0tfEzFtMbiq_ThgK5wOMRpLDJsetxekwvf9SPe_NY5-Xh6fF--lKu359flYlXauqZTaY1spGVdY52sOXrhKDIqauEFmpYbx0HJhnurrOocA984Q1GhMShbZmw9J3enveuu10PKZ6ZvHbugXxYrfZzl16iQSu1pZumJtSmOY0L_F6Cgj570RmdP-uhJA9fZU848nDKYn9gHTHrMyM6iCwntpF0M_6R_AJDwcFM</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Giannakos, A.</creator><creator>Hifi, M.</creator><creator>Kheffache, R.</creator><creator>Ouafi, R.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9983-0028</orcidid><orcidid>https://orcid.org/0000-0002-1031-7701</orcidid></search><sort><creationdate>20170901</creationdate><title>An approximation algorithm for the k-fixed depots problem</title><author>Giannakos, A. ; Hifi, M. ; Kheffache, R. ; Ouafi, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-cb848c2a4cd836ef7d1e21737f7eb56bd609846fc9c9ad20f4db1e9ebbe852bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Computer Science</topic><topic>Cubic</topic><topic>Factor-critical</topic><topic>k-Depots</topic><topic>TSP</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giannakos, A.</creatorcontrib><creatorcontrib>Hifi, M.</creatorcontrib><creatorcontrib>Kheffache, R.</creatorcontrib><creatorcontrib>Ouafi, R.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers & industrial engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giannakos, A.</au><au>Hifi, M.</au><au>Kheffache, R.</au><au>Ouafi, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approximation algorithm for the k-fixed depots problem</atitle><jtitle>Computers & industrial engineering</jtitle><date>2017-09-01</date><risdate>2017</risdate><volume>111</volume><spage>50</spage><epage>55</epage><pages>50-55</pages><issn>0360-8352</issn><eissn>1879-0550</eissn><abstract>•The k-DHPP, in a cubic graph with 2-vertex-connected, is studied.•We establish a new approximation algorithm (with 5/3-approximation).•A shortest tour in a factor critical and 2-vertex connected graph is considered.•A polynomial approximation algorithm (with 7/6-approximation ratio) is established.
In this paper, we consider the k-Depots Hamiltonian Path Problem (k-DHPP) of searching k paths in a graph G, starting from k fixed vertices and spanning all the vertices of G. We propose an approximation algorithm for solving the k-DHPP, where the underlying graph is cubic and 2-vertex-connected. Then, we prove the existence of a 53-approximation algorithm that gives a solution with total cost at most 53n-4k-23. In this case, the proposed method is based upon searching for a perfect matching, constructing an Eulerian graph and finally a k paths solution, following the process of removing/adding edges. We also present an approximation algorithm for finding a shortest tour passing through all vertices in a factor-critical and 2-vertex connected graph. The proposed algorithm achieves a 76-approximation ratio where the principle of the method is based on decomposing the graph into a series of ears.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.cie.2017.06.022</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-9983-0028</orcidid><orcidid>https://orcid.org/0000-0002-1031-7701</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0360-8352 |
ispartof | Computers & industrial engineering, 2017-09, Vol.111, p.50-55 |
issn | 0360-8352 1879-0550 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03617899v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Approximation Computer Science Cubic Factor-critical k-Depots TSP |
title | An approximation algorithm for the k-fixed depots problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approximation%20algorithm%20for%20the%20k-fixed%20depots%20problem&rft.jtitle=Computers%20&%20industrial%20engineering&rft.au=Giannakos,%20A.&rft.date=2017-09-01&rft.volume=111&rft.spage=50&rft.epage=55&rft.pages=50-55&rft.issn=0360-8352&rft.eissn=1879-0550&rft_id=info:doi/10.1016/j.cie.2017.06.022&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03617899v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0360835217302747&rfr_iscdi=true |