Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach

This work offers an approach to aerial image classification for use in remote sensing object recognition, image processing and computer vision. Sparse coding (SC) is used to classify unmanned-aerial-vehicle (UAV) and satellite images because SC representation can generalize a large dataset and impro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neural computing & applications 2019-08, Vol.31 (8), p.3587-3607
Hauptverfasser: Qayyum, Abdul, Saeed Malik, Aamir, Saad, Naufal M., Iqbal, Mahboob, Abdullah, Mohd Faris, Rasheed, Waqas, Abdullah, Tuan A. B. Rashid, Bin Jafaar, Mohd Yaqoob
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3607
container_issue 8
container_start_page 3587
container_title Neural computing & applications
container_volume 31
creator Qayyum, Abdul
Saeed Malik, Aamir
Saad, Naufal M.
Iqbal, Mahboob
Abdullah, Mohd Faris
Rasheed, Waqas
Abdullah, Tuan A. B. Rashid
Bin Jafaar, Mohd Yaqoob
description This work offers an approach to aerial image classification for use in remote sensing object recognition, image processing and computer vision. Sparse coding (SC) is used to classify unmanned-aerial-vehicle (UAV) and satellite images because SC representation can generalize a large dataset and improve the detection of distinctive features by reducing calculation time for feature matching and classification. Features from images are extracted based on the following descriptors: (a) Scale Invariant Feature Transform; (b) Histogram of Oriented Gradients; and (c) Local Binary Patterns. SC representation and local image features are combined to represent global features for classification. Features are deployed in a sparse model to store descriptor features using extant dictionaries such as (a) the Discrete Cosine Transform and (b) the Discrete Wavelet Transform. An additional two dictionaries are proposed as developed for the present work: (c) the Discrete Ridgelet Transform (DRT) and (d) the Discrete Tchebichef Transform. The DRT dictionary is constructed by using the Ricker wavelet function to generate finite Ridgelet transforms as basis elements for a hybrid dictionary. Different pooling methods have also been employed to convert sparse-coded features into a feature matrix. Various machine learning algorithms are then applied to the feature matrix to classify objects contained in UAV and satellite imagery data. Experimental results show that the SC model secured better accuracy rates for extracted discriminative features contained in remote sensing images. The authors concluded that the proposed SC technique and proposed dictionaries provided feasible solutions for image classification and object recognition.
doi_str_mv 10.1007/s00521-017-3300-5
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03617130v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2285557827</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-cff41467c15d73b32b43de0428d9a6e0c237f731b15083ca2b5efaf50d6fa68c3</originalsourceid><addsrcrecordid>eNp1UU1PwyAYJkYT5_QHeCPx5KH6AqV03pZFnckSL3ombylsLLOd0Jrs6i-XpouePMHL88EDDyHXDO4YgLqPAJKzDJjKhADI5AmZsFyITIAsT8kEZnlCi1yck4sYtwCQF6WckO-XD1xbanYYo3feYOfbhlYYbU3TJu4xRJuZtk6zs9j1wUbaR9-sjxhN2DB11mwa_9lb6tpA0QaPO-oH83B4oEg3hyr4mtbeDDdgOFDc70OLZnNJzhzuor06rlPy_vT4tlhmq9fnl8V8lRkhocuMcznLC2WYrJWoBK9yUVvIeVnPsLBguFBOCVYxCaUwyCtpHToJdeGwKI2YktvRd4M7vQ8pWzjoFr1ezld6OANRMMUEfLHEvRm5KWJ6U-z0tu1Dk-JpzksppSq5Siw2skxoYwzW_doy0EMteqxFp1r0UIuWScNHTUzcJv3On_P_oh-JE5EO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285557827</pqid></control><display><type>article</type><title>Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach</title><source>SpringerLink (Online service)</source><creator>Qayyum, Abdul ; Saeed Malik, Aamir ; Saad, Naufal M. ; Iqbal, Mahboob ; Abdullah, Mohd Faris ; Rasheed, Waqas ; Abdullah, Tuan A. B. Rashid ; Bin Jafaar, Mohd Yaqoob</creator><creatorcontrib>Qayyum, Abdul ; Saeed Malik, Aamir ; Saad, Naufal M. ; Iqbal, Mahboob ; Abdullah, Mohd Faris ; Rasheed, Waqas ; Abdullah, Tuan A. B. Rashid ; Bin Jafaar, Mohd Yaqoob</creatorcontrib><description>This work offers an approach to aerial image classification for use in remote sensing object recognition, image processing and computer vision. Sparse coding (SC) is used to classify unmanned-aerial-vehicle (UAV) and satellite images because SC representation can generalize a large dataset and improve the detection of distinctive features by reducing calculation time for feature matching and classification. Features from images are extracted based on the following descriptors: (a) Scale Invariant Feature Transform; (b) Histogram of Oriented Gradients; and (c) Local Binary Patterns. SC representation and local image features are combined to represent global features for classification. Features are deployed in a sparse model to store descriptor features using extant dictionaries such as (a) the Discrete Cosine Transform and (b) the Discrete Wavelet Transform. An additional two dictionaries are proposed as developed for the present work: (c) the Discrete Ridgelet Transform (DRT) and (d) the Discrete Tchebichef Transform. The DRT dictionary is constructed by using the Ricker wavelet function to generate finite Ridgelet transforms as basis elements for a hybrid dictionary. Different pooling methods have also been employed to convert sparse-coded features into a feature matrix. Various machine learning algorithms are then applied to the feature matrix to classify objects contained in UAV and satellite imagery data. Experimental results show that the SC model secured better accuracy rates for extracted discriminative features contained in remote sensing images. The authors concluded that the proposed SC technique and proposed dictionaries provided feasible solutions for image classification and object recognition.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-017-3300-5</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Aerial photography ; Algorithms ; Artificial Intelligence ; Biological Physics ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Computer vision ; Data Mining and Knowledge Discovery ; Dictionaries ; Discrete cosine transform ; Discrete Wavelet Transform ; Feature extraction ; Histograms ; Image classification ; Image coding ; Image processing ; Image Processing and Computer Vision ; Machine learning ; Model accuracy ; Object recognition ; Original Article ; Physics ; Probability and Statistics in Computer Science ; Remote sensing ; Representations ; Satellite imagery ; Unmanned aerial vehicles ; Wavelet transforms</subject><ispartof>Neural computing &amp; applications, 2019-08, Vol.31 (8), p.3587-3607</ispartof><rights>The Natural Computing Applications Forum 2017</rights><rights>Neural Computing and Applications is a copyright of Springer, (2017). All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-cff41467c15d73b32b43de0428d9a6e0c237f731b15083ca2b5efaf50d6fa68c3</citedby><cites>FETCH-LOGICAL-c350t-cff41467c15d73b32b43de0428d9a6e0c237f731b15083ca2b5efaf50d6fa68c3</cites><orcidid>0000-0003-3102-1595</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00521-017-3300-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00521-017-3300-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03617130$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Saeed Malik, Aamir</creatorcontrib><creatorcontrib>Saad, Naufal M.</creatorcontrib><creatorcontrib>Iqbal, Mahboob</creatorcontrib><creatorcontrib>Abdullah, Mohd Faris</creatorcontrib><creatorcontrib>Rasheed, Waqas</creatorcontrib><creatorcontrib>Abdullah, Tuan A. B. Rashid</creatorcontrib><creatorcontrib>Bin Jafaar, Mohd Yaqoob</creatorcontrib><title>Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>This work offers an approach to aerial image classification for use in remote sensing object recognition, image processing and computer vision. Sparse coding (SC) is used to classify unmanned-aerial-vehicle (UAV) and satellite images because SC representation can generalize a large dataset and improve the detection of distinctive features by reducing calculation time for feature matching and classification. Features from images are extracted based on the following descriptors: (a) Scale Invariant Feature Transform; (b) Histogram of Oriented Gradients; and (c) Local Binary Patterns. SC representation and local image features are combined to represent global features for classification. Features are deployed in a sparse model to store descriptor features using extant dictionaries such as (a) the Discrete Cosine Transform and (b) the Discrete Wavelet Transform. An additional two dictionaries are proposed as developed for the present work: (c) the Discrete Ridgelet Transform (DRT) and (d) the Discrete Tchebichef Transform. The DRT dictionary is constructed by using the Ricker wavelet function to generate finite Ridgelet transforms as basis elements for a hybrid dictionary. Different pooling methods have also been employed to convert sparse-coded features into a feature matrix. Various machine learning algorithms are then applied to the feature matrix to classify objects contained in UAV and satellite imagery data. Experimental results show that the SC model secured better accuracy rates for extracted discriminative features contained in remote sensing images. The authors concluded that the proposed SC technique and proposed dictionaries provided feasible solutions for image classification and object recognition.</description><subject>Aerial photography</subject><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Biological Physics</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Computer vision</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Dictionaries</subject><subject>Discrete cosine transform</subject><subject>Discrete Wavelet Transform</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image classification</subject><subject>Image coding</subject><subject>Image processing</subject><subject>Image Processing and Computer Vision</subject><subject>Machine learning</subject><subject>Model accuracy</subject><subject>Object recognition</subject><subject>Original Article</subject><subject>Physics</subject><subject>Probability and Statistics in Computer Science</subject><subject>Remote sensing</subject><subject>Representations</subject><subject>Satellite imagery</subject><subject>Unmanned aerial vehicles</subject><subject>Wavelet transforms</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1UU1PwyAYJkYT5_QHeCPx5KH6AqV03pZFnckSL3ombylsLLOd0Jrs6i-XpouePMHL88EDDyHXDO4YgLqPAJKzDJjKhADI5AmZsFyITIAsT8kEZnlCi1yck4sYtwCQF6WckO-XD1xbanYYo3feYOfbhlYYbU3TJu4xRJuZtk6zs9j1wUbaR9-sjxhN2DB11mwa_9lb6tpA0QaPO-oH83B4oEg3hyr4mtbeDDdgOFDc70OLZnNJzhzuor06rlPy_vT4tlhmq9fnl8V8lRkhocuMcznLC2WYrJWoBK9yUVvIeVnPsLBguFBOCVYxCaUwyCtpHToJdeGwKI2YktvRd4M7vQ8pWzjoFr1ezld6OANRMMUEfLHEvRm5KWJ6U-z0tu1Dk-JpzksppSq5Siw2skxoYwzW_doy0EMteqxFp1r0UIuWScNHTUzcJv3On_P_oh-JE5EO</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Qayyum, Abdul</creator><creator>Saeed Malik, Aamir</creator><creator>Saad, Naufal M.</creator><creator>Iqbal, Mahboob</creator><creator>Abdullah, Mohd Faris</creator><creator>Rasheed, Waqas</creator><creator>Abdullah, Tuan A. B. Rashid</creator><creator>Bin Jafaar, Mohd Yaqoob</creator><general>Springer London</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid></search><sort><creationdate>20190801</creationdate><title>Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach</title><author>Qayyum, Abdul ; Saeed Malik, Aamir ; Saad, Naufal M. ; Iqbal, Mahboob ; Abdullah, Mohd Faris ; Rasheed, Waqas ; Abdullah, Tuan A. B. Rashid ; Bin Jafaar, Mohd Yaqoob</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-cff41467c15d73b32b43de0428d9a6e0c237f731b15083ca2b5efaf50d6fa68c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aerial photography</topic><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Biological Physics</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Computer vision</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Dictionaries</topic><topic>Discrete cosine transform</topic><topic>Discrete Wavelet Transform</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image classification</topic><topic>Image coding</topic><topic>Image processing</topic><topic>Image Processing and Computer Vision</topic><topic>Machine learning</topic><topic>Model accuracy</topic><topic>Object recognition</topic><topic>Original Article</topic><topic>Physics</topic><topic>Probability and Statistics in Computer Science</topic><topic>Remote sensing</topic><topic>Representations</topic><topic>Satellite imagery</topic><topic>Unmanned aerial vehicles</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qayyum, Abdul</creatorcontrib><creatorcontrib>Saeed Malik, Aamir</creatorcontrib><creatorcontrib>Saad, Naufal M.</creatorcontrib><creatorcontrib>Iqbal, Mahboob</creatorcontrib><creatorcontrib>Abdullah, Mohd Faris</creatorcontrib><creatorcontrib>Rasheed, Waqas</creatorcontrib><creatorcontrib>Abdullah, Tuan A. B. Rashid</creatorcontrib><creatorcontrib>Bin Jafaar, Mohd Yaqoob</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qayyum, Abdul</au><au>Saeed Malik, Aamir</au><au>Saad, Naufal M.</au><au>Iqbal, Mahboob</au><au>Abdullah, Mohd Faris</au><au>Rasheed, Waqas</au><au>Abdullah, Tuan A. B. Rashid</au><au>Bin Jafaar, Mohd Yaqoob</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2019-08-01</date><risdate>2019</risdate><volume>31</volume><issue>8</issue><spage>3587</spage><epage>3607</epage><pages>3587-3607</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>This work offers an approach to aerial image classification for use in remote sensing object recognition, image processing and computer vision. Sparse coding (SC) is used to classify unmanned-aerial-vehicle (UAV) and satellite images because SC representation can generalize a large dataset and improve the detection of distinctive features by reducing calculation time for feature matching and classification. Features from images are extracted based on the following descriptors: (a) Scale Invariant Feature Transform; (b) Histogram of Oriented Gradients; and (c) Local Binary Patterns. SC representation and local image features are combined to represent global features for classification. Features are deployed in a sparse model to store descriptor features using extant dictionaries such as (a) the Discrete Cosine Transform and (b) the Discrete Wavelet Transform. An additional two dictionaries are proposed as developed for the present work: (c) the Discrete Ridgelet Transform (DRT) and (d) the Discrete Tchebichef Transform. The DRT dictionary is constructed by using the Ricker wavelet function to generate finite Ridgelet transforms as basis elements for a hybrid dictionary. Different pooling methods have also been employed to convert sparse-coded features into a feature matrix. Various machine learning algorithms are then applied to the feature matrix to classify objects contained in UAV and satellite imagery data. Experimental results show that the SC model secured better accuracy rates for extracted discriminative features contained in remote sensing images. The authors concluded that the proposed SC technique and proposed dictionaries provided feasible solutions for image classification and object recognition.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-017-3300-5</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-3102-1595</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2019-08, Vol.31 (8), p.3587-3607
issn 0941-0643
1433-3058
language eng
recordid cdi_hal_primary_oai_HAL_hal_03617130v1
source SpringerLink (Online service)
subjects Aerial photography
Algorithms
Artificial Intelligence
Biological Physics
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Computer vision
Data Mining and Knowledge Discovery
Dictionaries
Discrete cosine transform
Discrete Wavelet Transform
Feature extraction
Histograms
Image classification
Image coding
Image processing
Image Processing and Computer Vision
Machine learning
Model accuracy
Object recognition
Original Article
Physics
Probability and Statistics in Computer Science
Remote sensing
Representations
Satellite imagery
Unmanned aerial vehicles
Wavelet transforms
title Image classification based on sparse-coded features using sparse coding technique for aerial imagery: a hybrid dictionary approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A58%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20classification%20based%20on%20sparse-coded%20features%20using%20sparse%20coding%20technique%20for%20aerial%20imagery:%20a%20hybrid%20dictionary%20approach&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Qayyum,%20Abdul&rft.date=2019-08-01&rft.volume=31&rft.issue=8&rft.spage=3587&rft.epage=3607&rft.pages=3587-3607&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-017-3300-5&rft_dat=%3Cproquest_hal_p%3E2285557827%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285557827&rft_id=info:pmid/&rfr_iscdi=true