Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties

Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2022-03, Vol.14 (11), p.13305-13316
Hauptverfasser: Ly, Isabelle, Layan, Elodie, Picheau, Emmanuel, Chanut, Nicolas, Nallet, Frédéric, Bentaleb, Ahmed, Dourges, Marie-Anne, Pellenq, Roland J, Hillard, Elizabeth A, Toupance, Thierry, Dole, François, Louërat, Frédéric, Backov, Rénal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13316
container_issue 11
container_start_page 13305
container_title ACS applied materials & interfaces
container_volume 14
creator Ly, Isabelle
Layan, Elodie
Picheau, Emmanuel
Chanut, Nicolas
Nallet, Frédéric
Bentaleb, Ahmed
Dourges, Marie-Anne
Pellenq, Roland J
Hillard, Elizabeth A
Toupance, Thierry
Dole, François
Louërat, Frédéric
Backov, Rénal
description Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5–SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol–gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel–Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h–1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h–1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.
doi_str_mv 10.1021/acsami.1c24554
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616895v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637580164</sourcerecordid><originalsourceid>FETCH-LOGICAL-a227t-b25e1e00fab404ba6acb10cbbb0981054944f770ef5fd745295885893374f3d93</originalsourceid><addsrcrecordid>eNo9kc1OGzEUhUdVkUqBbddetpUGbI89P8sQQlMpEKTA2rrj2ORSx05tBym7vkPfgEfrk3SiRKzu0dGnI91ziuILo5eMcnYFOsEaL5nmQkrxoThlnRBlyyX_-K6F-FR8TumF0rriVJ4Wbzcm4bMnwZJr9BB35L7nc_nvz98FzjlZGGfLRQa_RP9M7oIPDvMqkWsDce9M0USIeoUaHHkIMSTMOzLg5HFlMJKJtajR-ExuI5qlcUPwOILNiYzcr52DjMFfjfRRkTFkcLuMmjzEsDExo0nnxYkFl8zF8Z4VT7eTx_G0nM1__ByPZiVw3uSy59IwQ6mFXlDRQw26Z1T3fU-7llEphgZs01BjpV02QvJOtq1su6pqhK2WXXVWfDvkrsCpTcT10IYKgGo6mqm9R6ua1W0nX9nAfj2wmxh-b03Kao1JG-fAm7BNitdVI1vKajGg3w_osI96CdvohycUo2o_mjqMpo6jVf8BoXuOZQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637580164</pqid></control><display><type>article</type><title>Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties</title><source>ACS Publications</source><creator>Ly, Isabelle ; Layan, Elodie ; Picheau, Emmanuel ; Chanut, Nicolas ; Nallet, Frédéric ; Bentaleb, Ahmed ; Dourges, Marie-Anne ; Pellenq, Roland J ; Hillard, Elizabeth A ; Toupance, Thierry ; Dole, François ; Louërat, Frédéric ; Backov, Rénal</creator><creatorcontrib>Ly, Isabelle ; Layan, Elodie ; Picheau, Emmanuel ; Chanut, Nicolas ; Nallet, Frédéric ; Bentaleb, Ahmed ; Dourges, Marie-Anne ; Pellenq, Roland J ; Hillard, Elizabeth A ; Toupance, Thierry ; Dole, François ; Louërat, Frédéric ; Backov, Rénal</creatorcontrib><description>Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5–SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol–gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel–Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h–1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h–1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.1c24554</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Catalysis ; Chemical Sciences ; Energy, Environmental, and Catalysis Applications ; Material chemistry ; Organic chemistry</subject><ispartof>ACS applied materials &amp; interfaces, 2022-03, Vol.14 (11), p.13305-13316</ispartof><rights>2022 American Chemical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-6921-4555 ; 0000-0002-5149-0324 ; 0000-0001-5946-8917 ; 0000-0001-8234-7064 ; 0000-0001-5357-9106 ; 0000-0001-7179-028X ; 0000-0003-0628-8765</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.1c24554$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.1c24554$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03616895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ly, Isabelle</creatorcontrib><creatorcontrib>Layan, Elodie</creatorcontrib><creatorcontrib>Picheau, Emmanuel</creatorcontrib><creatorcontrib>Chanut, Nicolas</creatorcontrib><creatorcontrib>Nallet, Frédéric</creatorcontrib><creatorcontrib>Bentaleb, Ahmed</creatorcontrib><creatorcontrib>Dourges, Marie-Anne</creatorcontrib><creatorcontrib>Pellenq, Roland J</creatorcontrib><creatorcontrib>Hillard, Elizabeth A</creatorcontrib><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>Dole, François</creatorcontrib><creatorcontrib>Louërat, Frédéric</creatorcontrib><creatorcontrib>Backov, Rénal</creatorcontrib><title>Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5–SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol–gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel–Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h–1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h–1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.</description><subject>Catalysis</subject><subject>Chemical Sciences</subject><subject>Energy, Environmental, and Catalysis Applications</subject><subject>Material chemistry</subject><subject>Organic chemistry</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kc1OGzEUhUdVkUqBbddetpUGbI89P8sQQlMpEKTA2rrj2ORSx05tBym7vkPfgEfrk3SiRKzu0dGnI91ziuILo5eMcnYFOsEaL5nmQkrxoThlnRBlyyX_-K6F-FR8TumF0rriVJ4Wbzcm4bMnwZJr9BB35L7nc_nvz98FzjlZGGfLRQa_RP9M7oIPDvMqkWsDce9M0USIeoUaHHkIMSTMOzLg5HFlMJKJtajR-ExuI5qlcUPwOILNiYzcr52DjMFfjfRRkTFkcLuMmjzEsDExo0nnxYkFl8zF8Z4VT7eTx_G0nM1__ByPZiVw3uSy59IwQ6mFXlDRQw26Z1T3fU-7llEphgZs01BjpV02QvJOtq1su6pqhK2WXXVWfDvkrsCpTcT10IYKgGo6mqm9R6ua1W0nX9nAfj2wmxh-b03Kao1JG-fAm7BNitdVI1vKajGg3w_osI96CdvohycUo2o_mjqMpo6jVf8BoXuOZQ</recordid><startdate>20220323</startdate><enddate>20220323</enddate><creator>Ly, Isabelle</creator><creator>Layan, Elodie</creator><creator>Picheau, Emmanuel</creator><creator>Chanut, Nicolas</creator><creator>Nallet, Frédéric</creator><creator>Bentaleb, Ahmed</creator><creator>Dourges, Marie-Anne</creator><creator>Pellenq, Roland J</creator><creator>Hillard, Elizabeth A</creator><creator>Toupance, Thierry</creator><creator>Dole, François</creator><creator>Louërat, Frédéric</creator><creator>Backov, Rénal</creator><general>American Chemical Society</general><general>Washington, D.C. : American Chemical Society</general><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6921-4555</orcidid><orcidid>https://orcid.org/0000-0002-5149-0324</orcidid><orcidid>https://orcid.org/0000-0001-5946-8917</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid><orcidid>https://orcid.org/0000-0001-5357-9106</orcidid><orcidid>https://orcid.org/0000-0001-7179-028X</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid></search><sort><creationdate>20220323</creationdate><title>Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties</title><author>Ly, Isabelle ; Layan, Elodie ; Picheau, Emmanuel ; Chanut, Nicolas ; Nallet, Frédéric ; Bentaleb, Ahmed ; Dourges, Marie-Anne ; Pellenq, Roland J ; Hillard, Elizabeth A ; Toupance, Thierry ; Dole, François ; Louërat, Frédéric ; Backov, Rénal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a227t-b25e1e00fab404ba6acb10cbbb0981054944f770ef5fd745295885893374f3d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalysis</topic><topic>Chemical Sciences</topic><topic>Energy, Environmental, and Catalysis Applications</topic><topic>Material chemistry</topic><topic>Organic chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ly, Isabelle</creatorcontrib><creatorcontrib>Layan, Elodie</creatorcontrib><creatorcontrib>Picheau, Emmanuel</creatorcontrib><creatorcontrib>Chanut, Nicolas</creatorcontrib><creatorcontrib>Nallet, Frédéric</creatorcontrib><creatorcontrib>Bentaleb, Ahmed</creatorcontrib><creatorcontrib>Dourges, Marie-Anne</creatorcontrib><creatorcontrib>Pellenq, Roland J</creatorcontrib><creatorcontrib>Hillard, Elizabeth A</creatorcontrib><creatorcontrib>Toupance, Thierry</creatorcontrib><creatorcontrib>Dole, François</creatorcontrib><creatorcontrib>Louërat, Frédéric</creatorcontrib><creatorcontrib>Backov, Rénal</creatorcontrib><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ly, Isabelle</au><au>Layan, Elodie</au><au>Picheau, Emmanuel</au><au>Chanut, Nicolas</au><au>Nallet, Frédéric</au><au>Bentaleb, Ahmed</au><au>Dourges, Marie-Anne</au><au>Pellenq, Roland J</au><au>Hillard, Elizabeth A</au><au>Toupance, Thierry</au><au>Dole, François</au><au>Louërat, Frédéric</au><au>Backov, Rénal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2022-03-23</date><risdate>2022</risdate><volume>14</volume><issue>11</issue><spage>13305</spage><epage>13316</epage><pages>13305-13316</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Alkylation of aromatic hydrocarbons is among the most industrially important reactions, employing acid catalysts such as AlCl3, H2SO4, HF, or H3PO4. However, these catalysts present severe drawbacks, such as low selectivity and high corrosiveness. Taking advantage of the intrinsic high acid strength and Lewis and Brønsted acidity of niobium oxide, we have designed the first series of Nb2O5–SiO2(HIPE) monolithic catalysts bearing multiscale porosity through the integration of a sol–gel process and the physical chemistry of complex fluids. The MUB-105 series offers efficient solvent-free heterogeneous catalysis toward Friedel–Crafts monoalkylation and -acylation reactions, where 100% conversion has been reached at 140 °C while cycling. Alkylation reactions employing the MUB-105(1) catalyst have a maximum turnover number (TON) of 104 and a turnover frequency (TOF) of 9 h–1, whereas for acylation, MUB-105(1) and MUB-105(2) yield maximum TON and TOF values of 107 and 11 h–1, respectively. Moreover, the catalysts are selective, producing equal amounts of ortho- and para-substituted alkylated products and greater than 90% of the para-substituted acylated product. The highest catalytic efficiencies are obtained for the MUB-105(1) catalyst, bearing the smallest Nb2O5 particle sizes, lowest Nb2O5 content, and the highest amorphous character. The catalysts presented here are in a monolithic self-standing state, offering easy handling, reusability, and separation from the final products.</abstract><pub>American Chemical Society</pub><doi>10.1021/acsami.1c24554</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6921-4555</orcidid><orcidid>https://orcid.org/0000-0002-5149-0324</orcidid><orcidid>https://orcid.org/0000-0001-5946-8917</orcidid><orcidid>https://orcid.org/0000-0001-8234-7064</orcidid><orcidid>https://orcid.org/0000-0001-5357-9106</orcidid><orcidid>https://orcid.org/0000-0001-7179-028X</orcidid><orcidid>https://orcid.org/0000-0003-0628-8765</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2022-03, Vol.14 (11), p.13305-13316
issn 1944-8244
1944-8252
language eng
recordid cdi_hal_primary_oai_HAL_hal_03616895v1
source ACS Publications
subjects Catalysis
Chemical Sciences
Energy, Environmental, and Catalysis Applications
Material chemistry
Organic chemistry
title Design of Binary Nb2O5–SiO2 Self-Standing Monoliths Bearing Hierarchical Porosity and Their Efficient Friedel–Crafts Alkylation/Acylation Catalytic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A17%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Binary%20Nb2O5%E2%80%93SiO2%20Self-Standing%20Monoliths%20Bearing%20Hierarchical%20Porosity%20and%20Their%20Efficient%20Friedel%E2%80%93Crafts%20Alkylation/Acylation%20Catalytic%20Properties&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Ly,%20Isabelle&rft.date=2022-03-23&rft.volume=14&rft.issue=11&rft.spage=13305&rft.epage=13316&rft.pages=13305-13316&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.1c24554&rft_dat=%3Cproquest_hal_p%3E2637580164%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637580164&rft_id=info:pmid/&rfr_iscdi=true