MIL‐96‐Al for Li–S Batteries: Shape or Size?

Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with variou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2022-01, Vol.34 (4), p.e2107836-n/a
Hauptverfasser: Geng, Pengbiao, Wang, Lei, Du, Meng, Bai, Yang, Li, Wenting, Liu, Yanfang, Chen, Shuangqiang, Braunstein, Pierre, Xu, Qiang, Pang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e2107836
container_title Advanced materials (Weinheim)
container_volume 34
creator Geng, Pengbiao
Wang, Lei
Du, Meng
Bai, Yang
Li, Wenting
Liu, Yanfang
Chen, Shuangqiang
Braunstein, Pierre
Xu, Qiang
Pang, Huan
description Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries. MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.
doi_str_mv 10.1002/adma.202107836
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616824v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2591210766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</originalsourceid><addsrcrecordid>eNqFkL9OwzAQhy0EglJYGVEkFhhSznZ8sVlQ-I8UxFCYLddxRFBKStyCysQjIPGGfRJcFYrEwnLW3X3-yf4I2aHQowDs0BRD02PAKKSS4wrpUMFonIASq6QDiotYYSI3yKb3jwCgEHCdbPAkpUpS1SHs5jqfvX8oDCWro7Jpo7yavX_2oxMzHru2cv4o6j-YkYvCql-9ueMtslaa2rvt77NL7i_O706v4vz28vo0y2ObQIpxaqm1QDlDKzAtLCacDxwYKVBgWcgiLZFJZ5kbcJBliSkrneTWhE5Qk_AuOVjkPphaj9pqaNqpbkylr7Jcz2fAkaJkyQsN7P6CHbXN88T5sR5W3rq6Nk-umXjNhKJzR4gB3fuDPjaT9in8RDNkTAGlQgSqt6Bs23jfunL5Agp6bl7Pzeul-XBh9zt2Mhi6Yon_qA6AWgCvVe2m_8Tp7Owm-w3_AgpJjPw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622901155</pqid></control><display><type>article</type><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</creator><creatorcontrib>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</creatorcontrib><description>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries. MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.202107836</identifier><identifier>PMID: 34719819</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Aluminum ; Chemical Sciences ; Density functional theory ; hexagonal bipyramidal crystals ; hexagonal platelet crystals ; hexagonal prismatic bipyramidal crystals ; Lithium sulfur batteries ; Li–S batteries ; Material chemistry ; Materials science ; Metal-organic frameworks ; MIL‐96‐Al ; Particle size ; Platelet crystals ; shuttle effect</subject><ispartof>Advanced materials (Weinheim), 2022-01, Vol.34 (4), p.e2107836-n/a</ispartof><rights>2021 Wiley‐VCH GmbH</rights><rights>2021 Wiley-VCH GmbH.</rights><rights>2022 Wiley‐VCH GmbH</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</citedby><cites>FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</cites><orcidid>0000-0002-5319-0480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.202107836$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.202107836$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34719819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03616824$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Geng, Pengbiao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Chen, Shuangqiang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries. MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</description><subject>Aluminum</subject><subject>Chemical Sciences</subject><subject>Density functional theory</subject><subject>hexagonal bipyramidal crystals</subject><subject>hexagonal platelet crystals</subject><subject>hexagonal prismatic bipyramidal crystals</subject><subject>Lithium sulfur batteries</subject><subject>Li–S batteries</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Metal-organic frameworks</subject><subject>MIL‐96‐Al</subject><subject>Particle size</subject><subject>Platelet crystals</subject><subject>shuttle effect</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqFkL9OwzAQhy0EglJYGVEkFhhSznZ8sVlQ-I8UxFCYLddxRFBKStyCysQjIPGGfRJcFYrEwnLW3X3-yf4I2aHQowDs0BRD02PAKKSS4wrpUMFonIASq6QDiotYYSI3yKb3jwCgEHCdbPAkpUpS1SHs5jqfvX8oDCWro7Jpo7yavX_2oxMzHru2cv4o6j-YkYvCql-9ueMtslaa2rvt77NL7i_O706v4vz28vo0y2ObQIpxaqm1QDlDKzAtLCacDxwYKVBgWcgiLZFJZ5kbcJBliSkrneTWhE5Qk_AuOVjkPphaj9pqaNqpbkylr7Jcz2fAkaJkyQsN7P6CHbXN88T5sR5W3rq6Nk-umXjNhKJzR4gB3fuDPjaT9in8RDNkTAGlQgSqt6Bs23jfunL5Agp6bl7Pzeul-XBh9zt2Mhi6Yon_qA6AWgCvVe2m_8Tp7Owm-w3_AgpJjPw</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Geng, Pengbiao</creator><creator>Wang, Lei</creator><creator>Du, Meng</creator><creator>Bai, Yang</creator><creator>Li, Wenting</creator><creator>Liu, Yanfang</creator><creator>Chen, Shuangqiang</creator><creator>Braunstein, Pierre</creator><creator>Xu, Qiang</creator><creator>Pang, Huan</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></search><sort><creationdate>20220101</creationdate><title>MIL‐96‐Al for Li–S Batteries: Shape or Size?</title><author>Geng, Pengbiao ; Wang, Lei ; Du, Meng ; Bai, Yang ; Li, Wenting ; Liu, Yanfang ; Chen, Shuangqiang ; Braunstein, Pierre ; Xu, Qiang ; Pang, Huan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4076-7c1cc01326c567dc6433be0a85656fd8d7f628ec2eb308ff672fe83ca30851a43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Chemical Sciences</topic><topic>Density functional theory</topic><topic>hexagonal bipyramidal crystals</topic><topic>hexagonal platelet crystals</topic><topic>hexagonal prismatic bipyramidal crystals</topic><topic>Lithium sulfur batteries</topic><topic>Li–S batteries</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Metal-organic frameworks</topic><topic>MIL‐96‐Al</topic><topic>Particle size</topic><topic>Platelet crystals</topic><topic>shuttle effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Geng, Pengbiao</creatorcontrib><creatorcontrib>Wang, Lei</creatorcontrib><creatorcontrib>Du, Meng</creatorcontrib><creatorcontrib>Bai, Yang</creatorcontrib><creatorcontrib>Li, Wenting</creatorcontrib><creatorcontrib>Liu, Yanfang</creatorcontrib><creatorcontrib>Chen, Shuangqiang</creatorcontrib><creatorcontrib>Braunstein, Pierre</creatorcontrib><creatorcontrib>Xu, Qiang</creatorcontrib><creatorcontrib>Pang, Huan</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Geng, Pengbiao</au><au>Wang, Lei</au><au>Du, Meng</au><au>Bai, Yang</au><au>Li, Wenting</au><au>Liu, Yanfang</au><au>Chen, Shuangqiang</au><au>Braunstein, Pierre</au><au>Xu, Qiang</au><au>Pang, Huan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MIL‐96‐Al for Li–S Batteries: Shape or Size?</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2022-01-01</date><risdate>2022</risdate><volume>34</volume><issue>4</issue><spage>e2107836</spage><epage>n/a</epage><pages>e2107836-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Metal–organic frameworks (MOFs) with controllable shapes and sizes show a great potential in Li–S batteries. However, neither the relationship between shape and specific capacity nor the influence of MOF particle size on cyclic stability have been fully established yet. Herein, MIL‐96‐Al with various shapes, forming hexagonal platelet crystals (HPC), hexagonal bipyramidal crystals (HBC), and hexagonal prismatic bipyramidal crystals (HPBC) are successfully prepared via cosolvent methods. Density functional theory (DFT) calculations demonstrate that the HBC shape with highly exposed (101) planes can effectively adsorb lithium polysulfides (LPS) during the charge/discharge process. By changing the relative proportion of the cosolvents, HBC samples with different particle sizes are prepared. When these MIL‐96‐Al crystals are used as sulfur host materials, it is found that those with a smaller size of the HBC shape deliver higher initial capacity. These investigations establish that different crystal planes have different adsorption abilities for LPS, and that the MOF particle size should be considered for a suitable sulfur host. More broadly, this work provides a strategy for designing sulfur hosts in Li–S batteries. MIL‐96‐Al crystals with hexagonal platelet crystal (HPC), hexagonal bipyramidal crystal (HBC), and hexagonal prismatic bipyramidal crystal (HPBC) shapes are successfully prepared by co‐solvent methods. Moreover, by changing the ratio of the cosolvent, different sizes of the HBC shape are prepared. These MIL‐96 crystals are used as sulfur hosts to investigate their ability to suppress the shuttle effect in Li–S batteries.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34719819</pmid><doi>10.1002/adma.202107836</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5319-0480</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2022-01, Vol.34 (4), p.e2107836-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_hal_primary_oai_HAL_hal_03616824v1
source Wiley Online Library Journals Frontfile Complete
subjects Aluminum
Chemical Sciences
Density functional theory
hexagonal bipyramidal crystals
hexagonal platelet crystals
hexagonal prismatic bipyramidal crystals
Lithium sulfur batteries
Li–S batteries
Material chemistry
Materials science
Metal-organic frameworks
MIL‐96‐Al
Particle size
Platelet crystals
shuttle effect
title MIL‐96‐Al for Li–S Batteries: Shape or Size?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A11%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MIL%E2%80%9096%E2%80%90Al%20for%20Li%E2%80%93S%20Batteries:%20Shape%20or%20Size?&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Geng,%20Pengbiao&rft.date=2022-01-01&rft.volume=34&rft.issue=4&rft.spage=e2107836&rft.epage=n/a&rft.pages=e2107836-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.202107836&rft_dat=%3Cproquest_hal_p%3E2591210766%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622901155&rft_id=info:pmid/34719819&rfr_iscdi=true