On-sky validation of image-based adaptive optics wavefront sensor referencing

Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront contro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astronomy and astrophysics (Berlin) 2022-03, Vol.659, p.A170
Hauptverfasser: Skaf, Nour, Guyon, Olivier, Gendron, Éric, Ahn, Kyohoon, Bertrou-Cantou, Arielle, Boccaletti, Anthony, Cranney, Jesse, Currie, Thayne, Deo, Vincent, Edwards, Billy, Ferreira, Florian, Gratadour, Damien, Lozi, Julien, Norris, Barnaby, Sevin, Arnaud, Vidal, Fabrice, Vievard, Sébastien
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page A170
container_title Astronomy and astrophysics (Berlin)
container_volume 659
creator Skaf, Nour
Guyon, Olivier
Gendron, Éric
Ahn, Kyohoon
Bertrou-Cantou, Arielle
Boccaletti, Anthony
Cranney, Jesse
Currie, Thayne
Deo, Vincent
Edwards, Billy
Ferreira, Florian
Gratadour, Damien
Lozi, Julien
Norris, Barnaby
Sevin, Arnaud
Vidal, Fabrice
Vievard, Sébastien
description Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them. Aims. We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems. Methods. By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images. Results. We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image. Conclusions. The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.
doi_str_mv 10.1051/0004-6361/202141514
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616801v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657863001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKu_wEvAk4e1eUmazR5L0Vao9KLn8Dab1K11U5PtSv-9u1R6Gt7jY5gZQu6BPQGbwoQxJjMlFEw44yBhCvKCjEAKnrFcqksyOhPX5CalbX9y0GJE3tZNlr6OtMNdXWFbh4YGT-tv3LisxOQqihXu27pzNPRiE_3FzvkYmpYm16QQaXTeRdfYutnckiuPu-Tu_nVMPl6e3-fLbLVevM5nq8xKztvMlxzRSlVpLSvJc2dVWRS2UJKjLiRUaK2QHi3KKhdFaTXzTPFcgxdQ6kKMyePJ9xN3Zh_7uPFoAtZmOVuZ4cf6pkoz6KBnH07sPoafg0ut2YZDbPp4hqtprpVgbKDEibIxpNRXOtsCM8PGZljQDAua88biDzX7beM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657863001</pqid></control><display><type>article</type><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</creator><creatorcontrib>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</creatorcontrib><description>Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them. Aims. We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems. Methods. By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images. Results. We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image. Conclusions. The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202141514</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Aberration ; Adaptive optics ; Algorithms ; Astrophysics ; Atmospheric turbulence ; Calibration ; Compensation ; Computer simulation ; Control equipment ; Control methods ; Convergence ; Extrasolar planets ; Focal plane ; Image contrast ; Image quality ; Iterative methods ; Mathematical models ; Optimization ; Physics ; Planet detection ; Point spread functions ; Reflecting telescopes ; Robustness (mathematics) ; Sensors ; Wave front control ; Wave front sensors ; Wave fronts</subject><ispartof>Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A170</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</citedby><cites>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</cites><orcidid>0000-0001-9353-2724 ; 0000-0002-9372-5056 ; 0000-0003-4514-7906 ; 0000-0002-3047-1845 ; 0000-0002-1097-9908 ; 0000-0002-7405-3119 ; 0000-0003-2080-7189 ; 0000-0002-5494-3237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03616801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaf, Nour</creatorcontrib><creatorcontrib>Guyon, Olivier</creatorcontrib><creatorcontrib>Gendron, Éric</creatorcontrib><creatorcontrib>Ahn, Kyohoon</creatorcontrib><creatorcontrib>Bertrou-Cantou, Arielle</creatorcontrib><creatorcontrib>Boccaletti, Anthony</creatorcontrib><creatorcontrib>Cranney, Jesse</creatorcontrib><creatorcontrib>Currie, Thayne</creatorcontrib><creatorcontrib>Deo, Vincent</creatorcontrib><creatorcontrib>Edwards, Billy</creatorcontrib><creatorcontrib>Ferreira, Florian</creatorcontrib><creatorcontrib>Gratadour, Damien</creatorcontrib><creatorcontrib>Lozi, Julien</creatorcontrib><creatorcontrib>Norris, Barnaby</creatorcontrib><creatorcontrib>Sevin, Arnaud</creatorcontrib><creatorcontrib>Vidal, Fabrice</creatorcontrib><creatorcontrib>Vievard, Sébastien</creatorcontrib><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><title>Astronomy and astrophysics (Berlin)</title><description>Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them. Aims. We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems. Methods. By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images. Results. We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image. Conclusions. The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</description><subject>Aberration</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Atmospheric turbulence</subject><subject>Calibration</subject><subject>Compensation</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Control methods</subject><subject>Convergence</subject><subject>Extrasolar planets</subject><subject>Focal plane</subject><subject>Image contrast</subject><subject>Image quality</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Planet detection</subject><subject>Point spread functions</subject><subject>Reflecting telescopes</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Wave front control</subject><subject>Wave front sensors</subject><subject>Wave fronts</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKu_wEvAk4e1eUmazR5L0Vao9KLn8Dab1K11U5PtSv-9u1R6Gt7jY5gZQu6BPQGbwoQxJjMlFEw44yBhCvKCjEAKnrFcqksyOhPX5CalbX9y0GJE3tZNlr6OtMNdXWFbh4YGT-tv3LisxOQqihXu27pzNPRiE_3FzvkYmpYm16QQaXTeRdfYutnckiuPu-Tu_nVMPl6e3-fLbLVevM5nq8xKztvMlxzRSlVpLSvJc2dVWRS2UJKjLiRUaK2QHi3KKhdFaTXzTPFcgxdQ6kKMyePJ9xN3Zh_7uPFoAtZmOVuZ4cf6pkoz6KBnH07sPoafg0ut2YZDbPp4hqtprpVgbKDEibIxpNRXOtsCM8PGZljQDAua88biDzX7beM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Skaf, Nour</creator><creator>Guyon, Olivier</creator><creator>Gendron, Éric</creator><creator>Ahn, Kyohoon</creator><creator>Bertrou-Cantou, Arielle</creator><creator>Boccaletti, Anthony</creator><creator>Cranney, Jesse</creator><creator>Currie, Thayne</creator><creator>Deo, Vincent</creator><creator>Edwards, Billy</creator><creator>Ferreira, Florian</creator><creator>Gratadour, Damien</creator><creator>Lozi, Julien</creator><creator>Norris, Barnaby</creator><creator>Sevin, Arnaud</creator><creator>Vidal, Fabrice</creator><creator>Vievard, Sébastien</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9353-2724</orcidid><orcidid>https://orcid.org/0000-0002-9372-5056</orcidid><orcidid>https://orcid.org/0000-0003-4514-7906</orcidid><orcidid>https://orcid.org/0000-0002-3047-1845</orcidid><orcidid>https://orcid.org/0000-0002-1097-9908</orcidid><orcidid>https://orcid.org/0000-0002-7405-3119</orcidid><orcidid>https://orcid.org/0000-0003-2080-7189</orcidid><orcidid>https://orcid.org/0000-0002-5494-3237</orcidid></search><sort><creationdate>20220301</creationdate><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><author>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aberration</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Atmospheric turbulence</topic><topic>Calibration</topic><topic>Compensation</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Control methods</topic><topic>Convergence</topic><topic>Extrasolar planets</topic><topic>Focal plane</topic><topic>Image contrast</topic><topic>Image quality</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Planet detection</topic><topic>Point spread functions</topic><topic>Reflecting telescopes</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Wave front control</topic><topic>Wave front sensors</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaf, Nour</creatorcontrib><creatorcontrib>Guyon, Olivier</creatorcontrib><creatorcontrib>Gendron, Éric</creatorcontrib><creatorcontrib>Ahn, Kyohoon</creatorcontrib><creatorcontrib>Bertrou-Cantou, Arielle</creatorcontrib><creatorcontrib>Boccaletti, Anthony</creatorcontrib><creatorcontrib>Cranney, Jesse</creatorcontrib><creatorcontrib>Currie, Thayne</creatorcontrib><creatorcontrib>Deo, Vincent</creatorcontrib><creatorcontrib>Edwards, Billy</creatorcontrib><creatorcontrib>Ferreira, Florian</creatorcontrib><creatorcontrib>Gratadour, Damien</creatorcontrib><creatorcontrib>Lozi, Julien</creatorcontrib><creatorcontrib>Norris, Barnaby</creatorcontrib><creatorcontrib>Sevin, Arnaud</creatorcontrib><creatorcontrib>Vidal, Fabrice</creatorcontrib><creatorcontrib>Vievard, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaf, Nour</au><au>Guyon, Olivier</au><au>Gendron, Éric</au><au>Ahn, Kyohoon</au><au>Bertrou-Cantou, Arielle</au><au>Boccaletti, Anthony</au><au>Cranney, Jesse</au><au>Currie, Thayne</au><au>Deo, Vincent</au><au>Edwards, Billy</au><au>Ferreira, Florian</au><au>Gratadour, Damien</au><au>Lozi, Julien</au><au>Norris, Barnaby</au><au>Sevin, Arnaud</au><au>Vidal, Fabrice</au><au>Vievard, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-sky validation of image-based adaptive optics wavefront sensor referencing</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>659</volume><spage>A170</spage><pages>A170-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them. Aims. We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems. Methods. By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images. Results. We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image. Conclusions. The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202141514</doi><orcidid>https://orcid.org/0000-0001-9353-2724</orcidid><orcidid>https://orcid.org/0000-0002-9372-5056</orcidid><orcidid>https://orcid.org/0000-0003-4514-7906</orcidid><orcidid>https://orcid.org/0000-0002-3047-1845</orcidid><orcidid>https://orcid.org/0000-0002-1097-9908</orcidid><orcidid>https://orcid.org/0000-0002-7405-3119</orcidid><orcidid>https://orcid.org/0000-0003-2080-7189</orcidid><orcidid>https://orcid.org/0000-0002-5494-3237</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A170
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_hal_03616801v1
source Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals
subjects Aberration
Adaptive optics
Algorithms
Astrophysics
Atmospheric turbulence
Calibration
Compensation
Computer simulation
Control equipment
Control methods
Convergence
Extrasolar planets
Focal plane
Image contrast
Image quality
Iterative methods
Mathematical models
Optimization
Physics
Planet detection
Point spread functions
Reflecting telescopes
Robustness (mathematics)
Sensors
Wave front control
Wave front sensors
Wave fronts
title On-sky validation of image-based adaptive optics wavefront sensor referencing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-sky%20validation%20of%20image-based%20adaptive%20optics%20wavefront%20sensor%20referencing&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Skaf,%20Nour&rft.date=2022-03-01&rft.volume=659&rft.spage=A170&rft.pages=A170-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202141514&rft_dat=%3Cproquest_hal_p%3E2657863001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657863001&rft_id=info:pmid/&rfr_iscdi=true