On-sky validation of image-based adaptive optics wavefront sensor referencing
Context. Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront contro...
Gespeichert in:
Veröffentlicht in: | Astronomy and astrophysics (Berlin) 2022-03, Vol.659, p.A170 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | A170 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 659 |
creator | Skaf, Nour Guyon, Olivier Gendron, Éric Ahn, Kyohoon Bertrou-Cantou, Arielle Boccaletti, Anthony Cranney, Jesse Currie, Thayne Deo, Vincent Edwards, Billy Ferreira, Florian Gratadour, Damien Lozi, Julien Norris, Barnaby Sevin, Arnaud Vidal, Fabrice Vievard, Sébastien |
description | Context.
Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them.
Aims.
We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems.
Methods.
By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images.
Results.
We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image.
Conclusions.
The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations. |
doi_str_mv | 10.1051/0004-6361/202141514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616801v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2657863001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</originalsourceid><addsrcrecordid>eNo9kEFLAzEUhIMoWKu_wEvAk4e1eUmazR5L0Vao9KLn8Dab1K11U5PtSv-9u1R6Gt7jY5gZQu6BPQGbwoQxJjMlFEw44yBhCvKCjEAKnrFcqksyOhPX5CalbX9y0GJE3tZNlr6OtMNdXWFbh4YGT-tv3LisxOQqihXu27pzNPRiE_3FzvkYmpYm16QQaXTeRdfYutnckiuPu-Tu_nVMPl6e3-fLbLVevM5nq8xKztvMlxzRSlVpLSvJc2dVWRS2UJKjLiRUaK2QHi3KKhdFaTXzTPFcgxdQ6kKMyePJ9xN3Zh_7uPFoAtZmOVuZ4cf6pkoz6KBnH07sPoafg0ut2YZDbPp4hqtprpVgbKDEibIxpNRXOtsCM8PGZljQDAua88biDzX7beM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2657863001</pqid></control><display><type>article</type><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><source>Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX</source><source>EDP Sciences</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</creator><creatorcontrib>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</creatorcontrib><description>Context.
Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them.
Aims.
We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems.
Methods.
By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images.
Results.
We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image.
Conclusions.
The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202141514</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Aberration ; Adaptive optics ; Algorithms ; Astrophysics ; Atmospheric turbulence ; Calibration ; Compensation ; Computer simulation ; Control equipment ; Control methods ; Convergence ; Extrasolar planets ; Focal plane ; Image contrast ; Image quality ; Iterative methods ; Mathematical models ; Optimization ; Physics ; Planet detection ; Point spread functions ; Reflecting telescopes ; Robustness (mathematics) ; Sensors ; Wave front control ; Wave front sensors ; Wave fronts</subject><ispartof>Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A170</ispartof><rights>2022. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</citedby><cites>FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</cites><orcidid>0000-0001-9353-2724 ; 0000-0002-9372-5056 ; 0000-0003-4514-7906 ; 0000-0002-3047-1845 ; 0000-0002-1097-9908 ; 0000-0002-7405-3119 ; 0000-0003-2080-7189 ; 0000-0002-5494-3237</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,3714,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03616801$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Skaf, Nour</creatorcontrib><creatorcontrib>Guyon, Olivier</creatorcontrib><creatorcontrib>Gendron, Éric</creatorcontrib><creatorcontrib>Ahn, Kyohoon</creatorcontrib><creatorcontrib>Bertrou-Cantou, Arielle</creatorcontrib><creatorcontrib>Boccaletti, Anthony</creatorcontrib><creatorcontrib>Cranney, Jesse</creatorcontrib><creatorcontrib>Currie, Thayne</creatorcontrib><creatorcontrib>Deo, Vincent</creatorcontrib><creatorcontrib>Edwards, Billy</creatorcontrib><creatorcontrib>Ferreira, Florian</creatorcontrib><creatorcontrib>Gratadour, Damien</creatorcontrib><creatorcontrib>Lozi, Julien</creatorcontrib><creatorcontrib>Norris, Barnaby</creatorcontrib><creatorcontrib>Sevin, Arnaud</creatorcontrib><creatorcontrib>Vidal, Fabrice</creatorcontrib><creatorcontrib>Vievard, Sébastien</creatorcontrib><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><title>Astronomy and astrophysics (Berlin)</title><description>Context.
Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them.
Aims.
We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems.
Methods.
By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images.
Results.
We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image.
Conclusions.
The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</description><subject>Aberration</subject><subject>Adaptive optics</subject><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Atmospheric turbulence</subject><subject>Calibration</subject><subject>Compensation</subject><subject>Computer simulation</subject><subject>Control equipment</subject><subject>Control methods</subject><subject>Convergence</subject><subject>Extrasolar planets</subject><subject>Focal plane</subject><subject>Image contrast</subject><subject>Image quality</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Physics</subject><subject>Planet detection</subject><subject>Point spread functions</subject><subject>Reflecting telescopes</subject><subject>Robustness (mathematics)</subject><subject>Sensors</subject><subject>Wave front control</subject><subject>Wave front sensors</subject><subject>Wave fronts</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kEFLAzEUhIMoWKu_wEvAk4e1eUmazR5L0Vao9KLn8Dab1K11U5PtSv-9u1R6Gt7jY5gZQu6BPQGbwoQxJjMlFEw44yBhCvKCjEAKnrFcqksyOhPX5CalbX9y0GJE3tZNlr6OtMNdXWFbh4YGT-tv3LisxOQqihXu27pzNPRiE_3FzvkYmpYm16QQaXTeRdfYutnckiuPu-Tu_nVMPl6e3-fLbLVevM5nq8xKztvMlxzRSlVpLSvJc2dVWRS2UJKjLiRUaK2QHi3KKhdFaTXzTPFcgxdQ6kKMyePJ9xN3Zh_7uPFoAtZmOVuZ4cf6pkoz6KBnH07sPoafg0ut2YZDbPp4hqtprpVgbKDEibIxpNRXOtsCM8PGZljQDAua88biDzX7beM</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Skaf, Nour</creator><creator>Guyon, Olivier</creator><creator>Gendron, Éric</creator><creator>Ahn, Kyohoon</creator><creator>Bertrou-Cantou, Arielle</creator><creator>Boccaletti, Anthony</creator><creator>Cranney, Jesse</creator><creator>Currie, Thayne</creator><creator>Deo, Vincent</creator><creator>Edwards, Billy</creator><creator>Ferreira, Florian</creator><creator>Gratadour, Damien</creator><creator>Lozi, Julien</creator><creator>Norris, Barnaby</creator><creator>Sevin, Arnaud</creator><creator>Vidal, Fabrice</creator><creator>Vievard, Sébastien</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9353-2724</orcidid><orcidid>https://orcid.org/0000-0002-9372-5056</orcidid><orcidid>https://orcid.org/0000-0003-4514-7906</orcidid><orcidid>https://orcid.org/0000-0002-3047-1845</orcidid><orcidid>https://orcid.org/0000-0002-1097-9908</orcidid><orcidid>https://orcid.org/0000-0002-7405-3119</orcidid><orcidid>https://orcid.org/0000-0003-2080-7189</orcidid><orcidid>https://orcid.org/0000-0002-5494-3237</orcidid></search><sort><creationdate>20220301</creationdate><title>On-sky validation of image-based adaptive optics wavefront sensor referencing</title><author>Skaf, Nour ; Guyon, Olivier ; Gendron, Éric ; Ahn, Kyohoon ; Bertrou-Cantou, Arielle ; Boccaletti, Anthony ; Cranney, Jesse ; Currie, Thayne ; Deo, Vincent ; Edwards, Billy ; Ferreira, Florian ; Gratadour, Damien ; Lozi, Julien ; Norris, Barnaby ; Sevin, Arnaud ; Vidal, Fabrice ; Vievard, Sébastien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-fb2aac46d884d427ec6b99c9642a8941dacc34faca4d739bc80f062781f31b893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aberration</topic><topic>Adaptive optics</topic><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Atmospheric turbulence</topic><topic>Calibration</topic><topic>Compensation</topic><topic>Computer simulation</topic><topic>Control equipment</topic><topic>Control methods</topic><topic>Convergence</topic><topic>Extrasolar planets</topic><topic>Focal plane</topic><topic>Image contrast</topic><topic>Image quality</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Physics</topic><topic>Planet detection</topic><topic>Point spread functions</topic><topic>Reflecting telescopes</topic><topic>Robustness (mathematics)</topic><topic>Sensors</topic><topic>Wave front control</topic><topic>Wave front sensors</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Skaf, Nour</creatorcontrib><creatorcontrib>Guyon, Olivier</creatorcontrib><creatorcontrib>Gendron, Éric</creatorcontrib><creatorcontrib>Ahn, Kyohoon</creatorcontrib><creatorcontrib>Bertrou-Cantou, Arielle</creatorcontrib><creatorcontrib>Boccaletti, Anthony</creatorcontrib><creatorcontrib>Cranney, Jesse</creatorcontrib><creatorcontrib>Currie, Thayne</creatorcontrib><creatorcontrib>Deo, Vincent</creatorcontrib><creatorcontrib>Edwards, Billy</creatorcontrib><creatorcontrib>Ferreira, Florian</creatorcontrib><creatorcontrib>Gratadour, Damien</creatorcontrib><creatorcontrib>Lozi, Julien</creatorcontrib><creatorcontrib>Norris, Barnaby</creatorcontrib><creatorcontrib>Sevin, Arnaud</creatorcontrib><creatorcontrib>Vidal, Fabrice</creatorcontrib><creatorcontrib>Vievard, Sébastien</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Skaf, Nour</au><au>Guyon, Olivier</au><au>Gendron, Éric</au><au>Ahn, Kyohoon</au><au>Bertrou-Cantou, Arielle</au><au>Boccaletti, Anthony</au><au>Cranney, Jesse</au><au>Currie, Thayne</au><au>Deo, Vincent</au><au>Edwards, Billy</au><au>Ferreira, Florian</au><au>Gratadour, Damien</au><au>Lozi, Julien</au><au>Norris, Barnaby</au><au>Sevin, Arnaud</au><au>Vidal, Fabrice</au><au>Vievard, Sébastien</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-sky validation of image-based adaptive optics wavefront sensor referencing</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>659</volume><spage>A170</spage><pages>A170-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context.
Differentiating between a true exoplanet signal and residual speckle noise is a key challenge in high-contrast imaging (HCI). Speckles result from a combination of fast, slow, and static wavefront aberrations introduced by atmospheric turbulence and instrument optics. While wavefront control techniques developed over the last decade have shown promise in minimizing fast atmospheric residuals, slow and static aberrations such as non-common path aberrations (NCPAs) remain a key limiting factor for exoplanet detection. NCPAs are not seen by the wavefront sensor (WFS) of the adaptive optics (AO) loop, hence the difficulty in correcting them.
Aims.
We propose to improve the identification and rejection of slow and static speckles in AO-corrected images. The algorithm known as the Direct Reinforcement Wavefront Heuristic Optimisation (DrWHO) performs a frequent compensation operation on static and quasi-static aberrations (including NCPAs) to boost image contrast. It is applicable to general-purpose AO systems as well as HCI systems.
Methods.
By changing the WFS reference at every iteration of the algorithm (a few tens of seconds), DrWHO changes the AO system point of convergence to lead it towards a compensation mechanism for the static and slow aberrations. References are calculated using an iterative lucky-imaging approach, where each iteration updates the WFS reference, ultimately favoring high-quality focal plane images.
Results.
We validated this concept through both numerical simulations and on-sky testing on the SCExAO instrument at the 8.2-m Subaru telescope. Simulations show a rapid convergence towards the correction of 82% of the NCPAs. On-sky tests were performed over a 10 min run in the visible (750 nm). We introduced a flux concentration (FC) metric to quantify the point spread function (PSF) quality and measure a 15.7% improvement compared to the pre-DrWHO image.
Conclusions.
The DrWHO algorithm is a robust focal-plane wavefront sensing calibration method that has been successfully demonstrated on-sky. It does not rely on a model and does not require wavefront sensor calibration or linearity. It is compatible with different wavefront control methods, and can be further optimized for speed and efficiency. The algorithm is ready to be incorporated in scientific observations, enabling better PSF quality and stability during observations.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202141514</doi><orcidid>https://orcid.org/0000-0001-9353-2724</orcidid><orcidid>https://orcid.org/0000-0002-9372-5056</orcidid><orcidid>https://orcid.org/0000-0003-4514-7906</orcidid><orcidid>https://orcid.org/0000-0002-3047-1845</orcidid><orcidid>https://orcid.org/0000-0002-1097-9908</orcidid><orcidid>https://orcid.org/0000-0002-7405-3119</orcidid><orcidid>https://orcid.org/0000-0003-2080-7189</orcidid><orcidid>https://orcid.org/0000-0002-5494-3237</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2022-03, Vol.659, p.A170 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03616801v1 |
source | Bacon EDP Sciences France Licence nationale-ISTEX-PS-Journals-PFISTEX; EDP Sciences; EZB-FREE-00999 freely available EZB journals |
subjects | Aberration Adaptive optics Algorithms Astrophysics Atmospheric turbulence Calibration Compensation Computer simulation Control equipment Control methods Convergence Extrasolar planets Focal plane Image contrast Image quality Iterative methods Mathematical models Optimization Physics Planet detection Point spread functions Reflecting telescopes Robustness (mathematics) Sensors Wave front control Wave front sensors Wave fronts |
title | On-sky validation of image-based adaptive optics wavefront sensor referencing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A30%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-sky%20validation%20of%20image-based%20adaptive%20optics%20wavefront%20sensor%20referencing&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Skaf,%20Nour&rft.date=2022-03-01&rft.volume=659&rft.spage=A170&rft.pages=A170-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202141514&rft_dat=%3Cproquest_hal_p%3E2657863001%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2657863001&rft_id=info:pmid/&rfr_iscdi=true |