Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs

The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy and buildings 2021-03, Vol.235, p.110702, Article 110702
Hauptverfasser: Lapertot, Arnaud, Cuny, Mathias, Kadoch, Benjamin, Le Métayer, Olivier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 110702
container_title Energy and buildings
container_volume 235
creator Lapertot, Arnaud
Cuny, Mathias
Kadoch, Benjamin
Le Métayer, Olivier
description The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.
doi_str_mv 10.1016/j.enbuild.2020.110702
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616441v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778820334885</els_id><sourcerecordid>2503172006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</originalsourceid><addsrcrecordid>eNqFUctqHDEQFCEBb5x8gkGQUw6zUc9D0pyCMYkdWPAlOQs9ejxaZqWNpN3E-frMeIyvPjVUVRfVXYRcAdsCA_5lv8VgTn5y25rVMwZMsPoN2YAUdcVByLdkwxohKyGkvCDvc94zxngnYEPK_bH4g_-ni4-BxoHqQFGnMlbaJzqiLhT_2lGHB0zUxoPxAR3948tI9UontPGM6ZGeMRQ_rUZDTDORvVswPdGneD480IDo8gfybtBTxo_P85L8-v7t581dtbu__XFzvatsC7JUDnjnGLOttcKY1pjOaNtrYANnnXG91JpJ48C5hvcdl8LUrgeoO-t6hwDNJfm8-o56UsfkDzo9qqi9urveqQVjDQfetnBetJ9W7THF3yfMRe3jKYU5nqo71oCo55fNqm5V2RRzTji82AJTSxlqr57LUEsZai1j3vu67uF87tljUtl6DBadn_9XlIv-FYf_ZDSWiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503172006</pqid></control><display><type>article</type><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</creator><creatorcontrib>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</creatorcontrib><description>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2020.110702</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air temperature ; Buildings ; Climatic zones ; Decision making ; Design parameters ; Earth ; Earth-air heat exchanger ; Economic analysis ; Energy ; Engineering Sciences ; Heat ; Heat exchangers ; Heat recovery ; Heat recovery systems ; Heat recovery ventilation ; Mechanics ; Meteorological data ; Multi-criteria optimization ; Multiple criterion ; Multiple-criteria decision making ; Pareto optimization ; Physics ; Renewable energy ; Residential buildings ; Sensitivity analysis ; Sizing ; Thermics ; Ventilation ; Weather</subject><ispartof>Energy and buildings, 2021-03, Vol.235, p.110702, Article 110702</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</citedby><cites>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</cites><orcidid>0000-0001-9346-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2020.110702$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03616441$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapertot, Arnaud</creatorcontrib><creatorcontrib>Cuny, Mathias</creatorcontrib><creatorcontrib>Kadoch, Benjamin</creatorcontrib><creatorcontrib>Le Métayer, Olivier</creatorcontrib><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><title>Energy and buildings</title><description>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</description><subject>Air temperature</subject><subject>Buildings</subject><subject>Climatic zones</subject><subject>Decision making</subject><subject>Design parameters</subject><subject>Earth</subject><subject>Earth-air heat exchanger</subject><subject>Economic analysis</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Heat recovery ventilation</subject><subject>Mechanics</subject><subject>Meteorological data</subject><subject>Multi-criteria optimization</subject><subject>Multiple criterion</subject><subject>Multiple-criteria decision making</subject><subject>Pareto optimization</subject><subject>Physics</subject><subject>Renewable energy</subject><subject>Residential buildings</subject><subject>Sensitivity analysis</subject><subject>Sizing</subject><subject>Thermics</subject><subject>Ventilation</subject><subject>Weather</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHDEQFCEBb5x8gkGQUw6zUc9D0pyCMYkdWPAlOQs9ejxaZqWNpN3E-frMeIyvPjVUVRfVXYRcAdsCA_5lv8VgTn5y25rVMwZMsPoN2YAUdcVByLdkwxohKyGkvCDvc94zxngnYEPK_bH4g_-ni4-BxoHqQFGnMlbaJzqiLhT_2lGHB0zUxoPxAR3948tI9UontPGM6ZGeMRQ_rUZDTDORvVswPdGneD480IDo8gfybtBTxo_P85L8-v7t581dtbu__XFzvatsC7JUDnjnGLOttcKY1pjOaNtrYANnnXG91JpJ48C5hvcdl8LUrgeoO-t6hwDNJfm8-o56UsfkDzo9qqi9urveqQVjDQfetnBetJ9W7THF3yfMRe3jKYU5nqo71oCo55fNqm5V2RRzTji82AJTSxlqr57LUEsZai1j3vu67uF87tljUtl6DBadn_9XlIv-FYf_ZDSWiw</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Lapertot, Arnaud</creator><creator>Cuny, Mathias</creator><creator>Kadoch, Benjamin</creator><creator>Le Métayer, Olivier</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9346-1399</orcidid></search><sort><creationdate>20210315</creationdate><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><author>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Buildings</topic><topic>Climatic zones</topic><topic>Decision making</topic><topic>Design parameters</topic><topic>Earth</topic><topic>Earth-air heat exchanger</topic><topic>Economic analysis</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Heat recovery ventilation</topic><topic>Mechanics</topic><topic>Meteorological data</topic><topic>Multi-criteria optimization</topic><topic>Multiple criterion</topic><topic>Multiple-criteria decision making</topic><topic>Pareto optimization</topic><topic>Physics</topic><topic>Renewable energy</topic><topic>Residential buildings</topic><topic>Sensitivity analysis</topic><topic>Sizing</topic><topic>Thermics</topic><topic>Ventilation</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapertot, Arnaud</creatorcontrib><creatorcontrib>Cuny, Mathias</creatorcontrib><creatorcontrib>Kadoch, Benjamin</creatorcontrib><creatorcontrib>Le Métayer, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapertot, Arnaud</au><au>Cuny, Mathias</au><au>Kadoch, Benjamin</au><au>Le Métayer, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</atitle><jtitle>Energy and buildings</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>235</volume><spage>110702</spage><pages>110702-</pages><artnum>110702</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2020.110702</doi><orcidid>https://orcid.org/0000-0001-9346-1399</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0378-7788
ispartof Energy and buildings, 2021-03, Vol.235, p.110702, Article 110702
issn 0378-7788
1872-6178
language eng
recordid cdi_hal_primary_oai_HAL_hal_03616441v1
source Elsevier ScienceDirect Journals Complete - AutoHoldings
subjects Air temperature
Buildings
Climatic zones
Decision making
Design parameters
Earth
Earth-air heat exchanger
Economic analysis
Energy
Engineering Sciences
Heat
Heat exchangers
Heat recovery
Heat recovery systems
Heat recovery ventilation
Mechanics
Meteorological data
Multi-criteria optimization
Multiple criterion
Multiple-criteria decision making
Pareto optimization
Physics
Renewable energy
Residential buildings
Sensitivity analysis
Sizing
Thermics
Ventilation
Weather
title Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20earth-air%20heat%20exchanger%20combined%20with%20a%20heat%20recovery%20ventilation%20for%20residential%20building%20needs&rft.jtitle=Energy%20and%20buildings&rft.au=Lapertot,%20Arnaud&rft.date=2021-03-15&rft.volume=235&rft.spage=110702&rft.pages=110702-&rft.artnum=110702&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2020.110702&rft_dat=%3Cproquest_hal_p%3E2503172006%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503172006&rft_id=info:pmid/&rft_els_id=S0378778820334885&rfr_iscdi=true