Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs
The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to me...
Gespeichert in:
Veröffentlicht in: | Energy and buildings 2021-03, Vol.235, p.110702, Article 110702 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 110702 |
container_title | Energy and buildings |
container_volume | 235 |
creator | Lapertot, Arnaud Cuny, Mathias Kadoch, Benjamin Le Métayer, Olivier |
description | The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones. |
doi_str_mv | 10.1016/j.enbuild.2020.110702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03616441v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378778820334885</els_id><sourcerecordid>2503172006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</originalsourceid><addsrcrecordid>eNqFUctqHDEQFCEBb5x8gkGQUw6zUc9D0pyCMYkdWPAlOQs9ejxaZqWNpN3E-frMeIyvPjVUVRfVXYRcAdsCA_5lv8VgTn5y25rVMwZMsPoN2YAUdcVByLdkwxohKyGkvCDvc94zxngnYEPK_bH4g_-ni4-BxoHqQFGnMlbaJzqiLhT_2lGHB0zUxoPxAR3948tI9UontPGM6ZGeMRQ_rUZDTDORvVswPdGneD480IDo8gfybtBTxo_P85L8-v7t581dtbu__XFzvatsC7JUDnjnGLOttcKY1pjOaNtrYANnnXG91JpJ48C5hvcdl8LUrgeoO-t6hwDNJfm8-o56UsfkDzo9qqi9urveqQVjDQfetnBetJ9W7THF3yfMRe3jKYU5nqo71oCo55fNqm5V2RRzTji82AJTSxlqr57LUEsZai1j3vu67uF87tljUtl6DBadn_9XlIv-FYf_ZDSWiw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2503172006</pqid></control><display><type>article</type><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</creator><creatorcontrib>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</creatorcontrib><description>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</description><identifier>ISSN: 0378-7788</identifier><identifier>EISSN: 1872-6178</identifier><identifier>DOI: 10.1016/j.enbuild.2020.110702</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Air temperature ; Buildings ; Climatic zones ; Decision making ; Design parameters ; Earth ; Earth-air heat exchanger ; Economic analysis ; Energy ; Engineering Sciences ; Heat ; Heat exchangers ; Heat recovery ; Heat recovery systems ; Heat recovery ventilation ; Mechanics ; Meteorological data ; Multi-criteria optimization ; Multiple criterion ; Multiple-criteria decision making ; Pareto optimization ; Physics ; Renewable energy ; Residential buildings ; Sensitivity analysis ; Sizing ; Thermics ; Ventilation ; Weather</subject><ispartof>Energy and buildings, 2021-03, Vol.235, p.110702, Article 110702</ispartof><rights>2020 Elsevier B.V.</rights><rights>Copyright Elsevier BV Mar 15, 2021</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</citedby><cites>FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</cites><orcidid>0000-0001-9346-1399</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.enbuild.2020.110702$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03616441$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lapertot, Arnaud</creatorcontrib><creatorcontrib>Cuny, Mathias</creatorcontrib><creatorcontrib>Kadoch, Benjamin</creatorcontrib><creatorcontrib>Le Métayer, Olivier</creatorcontrib><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><title>Energy and buildings</title><description>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</description><subject>Air temperature</subject><subject>Buildings</subject><subject>Climatic zones</subject><subject>Decision making</subject><subject>Design parameters</subject><subject>Earth</subject><subject>Earth-air heat exchanger</subject><subject>Economic analysis</subject><subject>Energy</subject><subject>Engineering Sciences</subject><subject>Heat</subject><subject>Heat exchangers</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Heat recovery ventilation</subject><subject>Mechanics</subject><subject>Meteorological data</subject><subject>Multi-criteria optimization</subject><subject>Multiple criterion</subject><subject>Multiple-criteria decision making</subject><subject>Pareto optimization</subject><subject>Physics</subject><subject>Renewable energy</subject><subject>Residential buildings</subject><subject>Sensitivity analysis</subject><subject>Sizing</subject><subject>Thermics</subject><subject>Ventilation</subject><subject>Weather</subject><issn>0378-7788</issn><issn>1872-6178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHDEQFCEBb5x8gkGQUw6zUc9D0pyCMYkdWPAlOQs9ejxaZqWNpN3E-frMeIyvPjVUVRfVXYRcAdsCA_5lv8VgTn5y25rVMwZMsPoN2YAUdcVByLdkwxohKyGkvCDvc94zxngnYEPK_bH4g_-ni4-BxoHqQFGnMlbaJzqiLhT_2lGHB0zUxoPxAR3948tI9UontPGM6ZGeMRQ_rUZDTDORvVswPdGneD480IDo8gfybtBTxo_P85L8-v7t581dtbu__XFzvatsC7JUDnjnGLOttcKY1pjOaNtrYANnnXG91JpJ48C5hvcdl8LUrgeoO-t6hwDNJfm8-o56UsfkDzo9qqi9urveqQVjDQfetnBetJ9W7THF3yfMRe3jKYU5nqo71oCo55fNqm5V2RRzTji82AJTSxlqr57LUEsZai1j3vu67uF87tljUtl6DBadn_9XlIv-FYf_ZDSWiw</recordid><startdate>20210315</startdate><enddate>20210315</enddate><creator>Lapertot, Arnaud</creator><creator>Cuny, Mathias</creator><creator>Kadoch, Benjamin</creator><creator>Le Métayer, Olivier</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9346-1399</orcidid></search><sort><creationdate>20210315</creationdate><title>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</title><author>Lapertot, Arnaud ; Cuny, Mathias ; Kadoch, Benjamin ; Le Métayer, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-d165d00c4cc7bb4bb5bac9a10f605bd98aa08bd1dd3695687b2d91125cd9de113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air temperature</topic><topic>Buildings</topic><topic>Climatic zones</topic><topic>Decision making</topic><topic>Design parameters</topic><topic>Earth</topic><topic>Earth-air heat exchanger</topic><topic>Economic analysis</topic><topic>Energy</topic><topic>Engineering Sciences</topic><topic>Heat</topic><topic>Heat exchangers</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Heat recovery ventilation</topic><topic>Mechanics</topic><topic>Meteorological data</topic><topic>Multi-criteria optimization</topic><topic>Multiple criterion</topic><topic>Multiple-criteria decision making</topic><topic>Pareto optimization</topic><topic>Physics</topic><topic>Renewable energy</topic><topic>Residential buildings</topic><topic>Sensitivity analysis</topic><topic>Sizing</topic><topic>Thermics</topic><topic>Ventilation</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lapertot, Arnaud</creatorcontrib><creatorcontrib>Cuny, Mathias</creatorcontrib><creatorcontrib>Kadoch, Benjamin</creatorcontrib><creatorcontrib>Le Métayer, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy and buildings</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lapertot, Arnaud</au><au>Cuny, Mathias</au><au>Kadoch, Benjamin</au><au>Le Métayer, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs</atitle><jtitle>Energy and buildings</jtitle><date>2021-03-15</date><risdate>2021</risdate><volume>235</volume><spage>110702</spage><pages>110702-</pages><artnum>110702</artnum><issn>0378-7788</issn><eissn>1872-6178</eissn><abstract>The Earth-Air Heat Exchanger (EAHE) is an energy system able to preheat or to cool a building using air ventilation. The coupling between the earth-air heat exchanger, the Heat Recovery Ventilation (HRV), the bypass and the building is modeled. System inputs correspond to sizing parameters and to meteorological data for several French climate zones. System outputs are composed of two energetic criteria and one economic criterion. A sensitivity analysis is performed to select the most significant variables. For the selected regulation and design parameters, tube radius, tube length, burial depth, air renewal and regulation temperature are the most influential variables. A multi-criteria optimization study is then carried out to determine the Pareto front. The objectives do not evolve in the same trend because when the coefficient of performance increases, the cost of recovered energy increases and the fraction of renewable energy decreases. A multiple-criteria decision making method is finally applied to select the optimal sizing and regulation. The results show that even if the system depends on weather conditions, the system achieves high energy performance for the different French climatic zones.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.enbuild.2020.110702</doi><orcidid>https://orcid.org/0000-0001-9346-1399</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0378-7788 |
ispartof | Energy and buildings, 2021-03, Vol.235, p.110702, Article 110702 |
issn | 0378-7788 1872-6178 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03616441v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Air temperature Buildings Climatic zones Decision making Design parameters Earth Earth-air heat exchanger Economic analysis Energy Engineering Sciences Heat Heat exchangers Heat recovery Heat recovery systems Heat recovery ventilation Mechanics Meteorological data Multi-criteria optimization Multiple criterion Multiple-criteria decision making Pareto optimization Physics Renewable energy Residential buildings Sensitivity analysis Sizing Thermics Ventilation Weather |
title | Optimization of an earth-air heat exchanger combined with a heat recovery ventilation for residential building needs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A00%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20an%20earth-air%20heat%20exchanger%20combined%20with%20a%20heat%20recovery%20ventilation%20for%20residential%20building%20needs&rft.jtitle=Energy%20and%20buildings&rft.au=Lapertot,%20Arnaud&rft.date=2021-03-15&rft.volume=235&rft.spage=110702&rft.pages=110702-&rft.artnum=110702&rft.issn=0378-7788&rft.eissn=1872-6178&rft_id=info:doi/10.1016/j.enbuild.2020.110702&rft_dat=%3Cproquest_hal_p%3E2503172006%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2503172006&rft_id=info:pmid/&rft_els_id=S0378778820334885&rfr_iscdi=true |