Products of random variables and the first digit phenomenon
We provide conditions on dependent and on non-stationary random variables Xn ensuring that the mantissa of the sequence of products ∏1nXk is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Lévy’s...
Gespeichert in:
Veröffentlicht in: | Stochastic processes and their applications 2018-05, Vol.128 (5), p.1615-1634 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1634 |
---|---|
container_issue | 5 |
container_start_page | 1615 |
container_title | Stochastic processes and their applications |
container_volume | 128 |
creator | Chenavier, Nicolas Massé, Bruno Schneider, Dominique |
description | We provide conditions on dependent and on non-stationary random variables Xn ensuring that the mantissa of the sequence of products ∏1nXk is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Lévy’s and Robbins’s results on distribution modulo 1 of sums of independent random variables. |
doi_str_mv | 10.1016/j.spa.2017.08.003 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03611355v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304414917301941</els_id><sourcerecordid>S0304414917301941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-911a1f19987c28a905aa127da4adb2351cd777080ff64c0b339b73509493b1203</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_wFuuHnadSbLNhp5KUSss6EHBW8jmw6a0uyVZC_57t1Q8ehiGGd5nYB5CbhFKBJzdb8q8NyUDlCXUJQA_IxOspSoYqI9zMgEOohAo1CW5ynkDAMgYTsj8NfXuyw6Z9oEm07l-Rw8mRdNufabjTIe1pyGmPFAXP-NA92vf9buxumtyEcw2-5vfPiXvjw9vy1XRvDw9LxdNYbkUQ6EQDQZUqpaW1UZBZQwy6YwwrmW8QuuklFBDCDNhoeVctZJXoITiLTLgU3J3urs2W71PcWfSt-5N1KtFo4874DNEXlUHHLN4ytrU55x8-AMQ9NGU3ujRlD6a0lDr0dTIzE-MH584RJ90ttF31ruYvB206-M_9A9DAG8j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Products of random variables and the first digit phenomenon</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Chenavier, Nicolas ; Massé, Bruno ; Schneider, Dominique</creator><creatorcontrib>Chenavier, Nicolas ; Massé, Bruno ; Schneider, Dominique</creatorcontrib><description>We provide conditions on dependent and on non-stationary random variables Xn ensuring that the mantissa of the sequence of products ∏1nXk is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Lévy’s and Robbins’s results on distribution modulo 1 of sums of independent random variables.</description><identifier>ISSN: 0304-4149</identifier><identifier>EISSN: 1879-209X</identifier><identifier>DOI: 10.1016/j.spa.2017.08.003</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Benford’s law ; Density ; Mantissa ; Mathematics ; Probability ; Weak convergence</subject><ispartof>Stochastic processes and their applications, 2018-05, Vol.128 (5), p.1615-1634</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-911a1f19987c28a905aa127da4adb2351cd777080ff64c0b339b73509493b1203</citedby><cites>FETCH-LOGICAL-c374t-911a1f19987c28a905aa127da4adb2351cd777080ff64c0b339b73509493b1203</cites><orcidid>0000-0001-7680-4361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304414917301941$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03611355$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Massé, Bruno</creatorcontrib><creatorcontrib>Schneider, Dominique</creatorcontrib><title>Products of random variables and the first digit phenomenon</title><title>Stochastic processes and their applications</title><description>We provide conditions on dependent and on non-stationary random variables Xn ensuring that the mantissa of the sequence of products ∏1nXk is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Lévy’s and Robbins’s results on distribution modulo 1 of sums of independent random variables.</description><subject>Benford’s law</subject><subject>Density</subject><subject>Mantissa</subject><subject>Mathematics</subject><subject>Probability</subject><subject>Weak convergence</subject><issn>0304-4149</issn><issn>1879-209X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_wFuuHnadSbLNhp5KUSss6EHBW8jmw6a0uyVZC_57t1Q8ehiGGd5nYB5CbhFKBJzdb8q8NyUDlCXUJQA_IxOspSoYqI9zMgEOohAo1CW5ynkDAMgYTsj8NfXuyw6Z9oEm07l-Rw8mRdNufabjTIe1pyGmPFAXP-NA92vf9buxumtyEcw2-5vfPiXvjw9vy1XRvDw9LxdNYbkUQ6EQDQZUqpaW1UZBZQwy6YwwrmW8QuuklFBDCDNhoeVctZJXoITiLTLgU3J3urs2W71PcWfSt-5N1KtFo4874DNEXlUHHLN4ytrU55x8-AMQ9NGU3ujRlD6a0lDr0dTIzE-MH584RJ90ttF31ruYvB206-M_9A9DAG8j</recordid><startdate>201805</startdate><enddate>201805</enddate><creator>Chenavier, Nicolas</creator><creator>Massé, Bruno</creator><creator>Schneider, Dominique</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid></search><sort><creationdate>201805</creationdate><title>Products of random variables and the first digit phenomenon</title><author>Chenavier, Nicolas ; Massé, Bruno ; Schneider, Dominique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-911a1f19987c28a905aa127da4adb2351cd777080ff64c0b339b73509493b1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Benford’s law</topic><topic>Density</topic><topic>Mantissa</topic><topic>Mathematics</topic><topic>Probability</topic><topic>Weak convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chenavier, Nicolas</creatorcontrib><creatorcontrib>Massé, Bruno</creatorcontrib><creatorcontrib>Schneider, Dominique</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Stochastic processes and their applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chenavier, Nicolas</au><au>Massé, Bruno</au><au>Schneider, Dominique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Products of random variables and the first digit phenomenon</atitle><jtitle>Stochastic processes and their applications</jtitle><date>2018-05</date><risdate>2018</risdate><volume>128</volume><issue>5</issue><spage>1615</spage><epage>1634</epage><pages>1615-1634</pages><issn>0304-4149</issn><eissn>1879-209X</eissn><abstract>We provide conditions on dependent and on non-stationary random variables Xn ensuring that the mantissa of the sequence of products ∏1nXk is almost surely distributed following Benford’s law or converges in distribution to Benford’s law. This is achieved through proving new generalizations of Lévy’s and Robbins’s results on distribution modulo 1 of sums of independent random variables.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.spa.2017.08.003</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-7680-4361</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4149 |
ispartof | Stochastic processes and their applications, 2018-05, Vol.128 (5), p.1615-1634 |
issn | 0304-4149 1879-209X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03611355v1 |
source | Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Benford’s law Density Mantissa Mathematics Probability Weak convergence |
title | Products of random variables and the first digit phenomenon |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T06%3A48%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Products%20of%20random%20variables%20and%20the%20first%20digit%20phenomenon&rft.jtitle=Stochastic%20processes%20and%20their%20applications&rft.au=Chenavier,%20Nicolas&rft.date=2018-05&rft.volume=128&rft.issue=5&rft.spage=1615&rft.epage=1634&rft.pages=1615-1634&rft.issn=0304-4149&rft.eissn=1879-209X&rft_id=info:doi/10.1016/j.spa.2017.08.003&rft_dat=%3Celsevier_hal_p%3ES0304414917301941%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0304414917301941&rfr_iscdi=true |