Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain

Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test images and ad hoc tuning independent of input...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EURASIP Journal on Advances in Signal Processing 2006-01, Vol.2006 (1), Article 048012
Hauptverfasser: Lucas, Yves, Domingues, Antonio, Driouchi, Driss, Treuillet, Sylvie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title EURASIP Journal on Advances in Signal Processing
container_volume 2006
creator Lucas, Yves
Domingues, Antonio
Driouchi, Driss
Treuillet, Sylvie
description Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test images and ad hoc tuning independent of input data. In this paper, we explain how the design of experiments applied on a large image database enables statistical modeling for IPC significant parameter identification. The second problem is then considered: how can we find the relevant tuning and continuously adapt image processing to input data After the tuning of the IPC on a typical subset of the image database using numerical optimization, we develop an adaptive IPC based on a neural network working on input image descriptors. By testing this approach on an IPC dedicated-to-road obstacle detection, we demonstrate that this experimental methodology and software architecture can ensure continuous efficiency. The reason is simple: the IPC is globally optimized, from a large number of real images and with adaptive processing of input data.
doi_str_mv 10.1155/ASP/2006/48012
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03611123v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>28939133</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-177684ca5934daa489f4294a3c078c87d5c89180cdfbba1fa67f2fa9149295e53</originalsourceid><addsrcrecordid>eNqNkc1LAzEQxYMoqNWr55wED23zsR_JsdRqCwUXrecwzSbtym5Sk23R_95dK-LR0xtmfjPM4yF0Q8mI0jQdT16KMSMkGyeCUHaCLmgm8mFGBTn9U5-jyxjfCEkzRtgFsvcmVhuHvcWzj50JVWNcG7H1ARcmdNKA0wbPDlDvoa28w-BKXECAxrQm4NXeVW7TrwN-9lDiRQMbg4vgtYmxH023ULkrdGahjub6Rwfo9WG2ms6Hy6fHxXSyHGqep-2Q5nkmEg2p5EkJkAhpEyYT4JrkQou8TLWQnQld2vUaqIUst8yCpIlkMjUpH6C7490t1GrXuYHwqTxUaj5Zqr5HeEYpZfxAO_b2yO6Cf9-b2KqmitrUNTjj91ExIbmknP8DZEzwjh6g0RHUwccYjP19gRLVZ6S6jFSfkfrOiH8BSw2DMA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28228389</pqid></control><display><type>article</type><title>Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain</title><source>Springer Nature - Complete Springer Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><creator>Lucas, Yves ; Domingues, Antonio ; Driouchi, Driss ; Treuillet, Sylvie</creator><creatorcontrib>Lucas, Yves ; Domingues, Antonio ; Driouchi, Driss ; Treuillet, Sylvie</creatorcontrib><description>Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test images and ad hoc tuning independent of input data. In this paper, we explain how the design of experiments applied on a large image database enables statistical modeling for IPC significant parameter identification. The second problem is then considered: how can we find the relevant tuning and continuously adapt image processing to input data After the tuning of the IPC on a typical subset of the image database using numerical optimization, we develop an adaptive IPC based on a neural network working on input image descriptors. By testing this approach on an IPC dedicated-to-road obstacle detection, we demonstrate that this experimental methodology and software architecture can ensure continuous efficiency. The reason is simple: the IPC is globally optimized, from a large number of real images and with adaptive processing of input data.</description><identifier>ISSN: 1687-6180</identifier><identifier>ISSN: 1110-8657</identifier><identifier>ISSN: 1687-6172</identifier><identifier>EISSN: 1687-6180</identifier><identifier>EISSN: 1687-0433</identifier><identifier>DOI: 10.1155/ASP/2006/48012</identifier><language>eng</language><publisher>SpringerOpen</publisher><subject>Computer Science ; Computer Vision and Pattern Recognition</subject><ispartof>EURASIP Journal on Advances in Signal Processing, 2006-01, Vol.2006 (1), Article 048012</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-177684ca5934daa489f4294a3c078c87d5c89180cdfbba1fa67f2fa9149295e53</citedby><cites>FETCH-LOGICAL-c375t-177684ca5934daa489f4294a3c078c87d5c89180cdfbba1fa67f2fa9149295e53</cites><orcidid>0000-0002-3969-3620 ; 0000-0002-6028-9964</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,860,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03611123$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lucas, Yves</creatorcontrib><creatorcontrib>Domingues, Antonio</creatorcontrib><creatorcontrib>Driouchi, Driss</creatorcontrib><creatorcontrib>Treuillet, Sylvie</creatorcontrib><title>Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain</title><title>EURASIP Journal on Advances in Signal Processing</title><description>Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test images and ad hoc tuning independent of input data. In this paper, we explain how the design of experiments applied on a large image database enables statistical modeling for IPC significant parameter identification. The second problem is then considered: how can we find the relevant tuning and continuously adapt image processing to input data After the tuning of the IPC on a typical subset of the image database using numerical optimization, we develop an adaptive IPC based on a neural network working on input image descriptors. By testing this approach on an IPC dedicated-to-road obstacle detection, we demonstrate that this experimental methodology and software architecture can ensure continuous efficiency. The reason is simple: the IPC is globally optimized, from a large number of real images and with adaptive processing of input data.</description><subject>Computer Science</subject><subject>Computer Vision and Pattern Recognition</subject><issn>1687-6180</issn><issn>1110-8657</issn><issn>1687-6172</issn><issn>1687-6180</issn><issn>1687-0433</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqNkc1LAzEQxYMoqNWr55wED23zsR_JsdRqCwUXrecwzSbtym5Sk23R_95dK-LR0xtmfjPM4yF0Q8mI0jQdT16KMSMkGyeCUHaCLmgm8mFGBTn9U5-jyxjfCEkzRtgFsvcmVhuHvcWzj50JVWNcG7H1ARcmdNKA0wbPDlDvoa28w-BKXECAxrQm4NXeVW7TrwN-9lDiRQMbg4vgtYmxH023ULkrdGahjub6Rwfo9WG2ms6Hy6fHxXSyHGqep-2Q5nkmEg2p5EkJkAhpEyYT4JrkQou8TLWQnQld2vUaqIUst8yCpIlkMjUpH6C7490t1GrXuYHwqTxUaj5Zqr5HeEYpZfxAO_b2yO6Cf9-b2KqmitrUNTjj91ExIbmknP8DZEzwjh6g0RHUwccYjP19gRLVZ6S6jFSfkfrOiH8BSw2DMA</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Lucas, Yves</creator><creator>Domingues, Antonio</creator><creator>Driouchi, Driss</creator><creator>Treuillet, Sylvie</creator><general>SpringerOpen</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3969-3620</orcidid><orcidid>https://orcid.org/0000-0002-6028-9964</orcidid></search><sort><creationdate>20060101</creationdate><title>Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain</title><author>Lucas, Yves ; Domingues, Antonio ; Driouchi, Driss ; Treuillet, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-177684ca5934daa489f4294a3c078c87d5c89180cdfbba1fa67f2fa9149295e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Computer Science</topic><topic>Computer Vision and Pattern Recognition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lucas, Yves</creatorcontrib><creatorcontrib>Domingues, Antonio</creatorcontrib><creatorcontrib>Driouchi, Driss</creatorcontrib><creatorcontrib>Treuillet, Sylvie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>EURASIP Journal on Advances in Signal Processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lucas, Yves</au><au>Domingues, Antonio</au><au>Driouchi, Driss</au><au>Treuillet, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain</atitle><jtitle>EURASIP Journal on Advances in Signal Processing</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>2006</volume><issue>1</issue><artnum>048012</artnum><issn>1687-6180</issn><issn>1110-8657</issn><issn>1687-6172</issn><eissn>1687-6180</eissn><eissn>1687-0433</eissn><abstract>Tuning a complete image processing chain (IPC) is not a straightforward task. The first problem to overcome is the evaluation of the whole process. Until now researchers have focused on the evaluation of single algorithms based on a small number of test images and ad hoc tuning independent of input data. In this paper, we explain how the design of experiments applied on a large image database enables statistical modeling for IPC significant parameter identification. The second problem is then considered: how can we find the relevant tuning and continuously adapt image processing to input data After the tuning of the IPC on a typical subset of the image database using numerical optimization, we develop an adaptive IPC based on a neural network working on input image descriptors. By testing this approach on an IPC dedicated-to-road obstacle detection, we demonstrate that this experimental methodology and software architecture can ensure continuous efficiency. The reason is simple: the IPC is globally optimized, from a large number of real images and with adaptive processing of input data.</abstract><pub>SpringerOpen</pub><doi>10.1155/ASP/2006/48012</doi><orcidid>https://orcid.org/0000-0002-3969-3620</orcidid><orcidid>https://orcid.org/0000-0002-6028-9964</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-6180
ispartof EURASIP Journal on Advances in Signal Processing, 2006-01, Vol.2006 (1), Article 048012
issn 1687-6180
1110-8657
1687-6172
1687-6180
1687-0433
language eng
recordid cdi_hal_primary_oai_HAL_hal_03611123v1
source Springer Nature - Complete Springer Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals
subjects Computer Science
Computer Vision and Pattern Recognition
title Design of Experiments for Performance Evaluation and Parameter Tuning of a Road Image Processing Chain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A45%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20Experiments%20for%20Performance%20Evaluation%20and%20Parameter%20Tuning%20of%20a%20Road%20Image%20Processing%20Chain&rft.jtitle=EURASIP%20Journal%20on%20Advances%20in%20Signal%20Processing&rft.au=Lucas,%20Yves&rft.date=2006-01-01&rft.volume=2006&rft.issue=1&rft.artnum=048012&rft.issn=1687-6180&rft.eissn=1687-6180&rft_id=info:doi/10.1155/ASP/2006/48012&rft_dat=%3Cproquest_hal_p%3E28939133%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=28228389&rft_id=info:pmid/&rfr_iscdi=true