Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes

The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics in medicine & biology 2016-06, Vol.61 (11), p.4036-4047
Hauptverfasser: Gómez, F, Fleta, C, Esteban, S, Quirion, D, Pellegrini, G, Lozano, M, Prezado, Y, Dos Santos, M, Guardiola, C, Montarou, G, Prieto-Pena, J, Pardo-Montero, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4047
container_issue 11
container_start_page 4036
container_title Physics in medicine & biology
container_volume 61
creator Gómez, F
Fleta, C
Esteban, S
Quirion, D
Pellegrini, G
Lozano, M
Prezado, Y
Dos Santos, M
Guardiola, C
Montarou, G
Prieto-Pena, J
Pardo-Montero, Juan
description The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.
doi_str_mv 10.1088/0031-9155/61/11/4036
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03610204v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1790465863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-afea132ea8af73be1b1404f24be0e6d95020ad6356731c72e6807b3162fd71aa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMo7vrxD0R6Ej3UzTRp2j3K-gkrXhS8hbSZslnapiat4r83ZXXxIB7CQOZ534GHkBOgl0DzfEYpg3gOaToTMAOYccrEDpkCExCLVNBdMt0iE3Lg_ZpSgDzh-2SSZCBYnsOUvD6i8oPDBts-slVUKlfYNjLhNaZ0VltvGuydKSNtfJjF0Ieljz5Mv4qGuneqX5k2YteRN7UpQ04bq9Efkb1K1R6Pv-chebm9eV7cx8unu4fF1TIuObA-VhUqYAmqXFUZKxAK4JRXCS-QotDzlCZUacFSkTEoswRFTrOCgUgqnYFS7JBcbHpXqpadM41yn9IqI--vlnL8C1oglPB3COz5hu2cfRvQ97IxvsS6Vi3awUvI5pSLNBcsoHyDBgfeO6y23UDl6F-OcuUoVwqQAHL0H2Kn3xeGokG9Df0ID8DZBjC2k2s7uDbIkV1T_GqRna4CSP8A_z3-BXWzm3U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790465863</pqid></control><display><type>article</type><title>Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes</title><source>MEDLINE</source><source>IOP Publishing Journals</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Gómez, F ; Fleta, C ; Esteban, S ; Quirion, D ; Pellegrini, G ; Lozano, M ; Prezado, Y ; Dos Santos, M ; Guardiola, C ; Montarou, G ; Prieto-Pena, J ; Pardo-Montero, Juan</creator><creatorcontrib>Gómez, F ; Fleta, C ; Esteban, S ; Quirion, D ; Pellegrini, G ; Lozano, M ; Prezado, Y ; Dos Santos, M ; Guardiola, C ; Montarou, G ; Prieto-Pena, J ; Pardo-Montero, Juan</creatorcontrib><description>The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.</description><identifier>ISSN: 0031-9155</identifier><identifier>EISSN: 1361-6560</identifier><identifier>DOI: 10.1088/0031-9155/61/11/4036</identifier><identifier>PMID: 27163881</identifier><identifier>CODEN: PHMBA7</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>dosimetry ; hadrontherapy ; Heavy Ion Radiotherapy - instrumentation ; Humans ; LET ; Linear Energy Transfer ; microdosimetry ; Monte Carlo Method ; Physics ; Protons ; Radiometry - instrumentation ; Silicon ; silicon detectors</subject><ispartof>Physics in medicine &amp; biology, 2016-06, Vol.61 (11), p.4036-4047</ispartof><rights>2016 Institute of Physics and Engineering in Medicine</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-afea132ea8af73be1b1404f24be0e6d95020ad6356731c72e6807b3162fd71aa3</citedby><cites>FETCH-LOGICAL-c413t-afea132ea8af73be1b1404f24be0e6d95020ad6356731c72e6807b3162fd71aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1088/0031-9155/61/11/4036/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,778,782,883,27913,27914,53835,53882</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27163881$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03610204$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, F</creatorcontrib><creatorcontrib>Fleta, C</creatorcontrib><creatorcontrib>Esteban, S</creatorcontrib><creatorcontrib>Quirion, D</creatorcontrib><creatorcontrib>Pellegrini, G</creatorcontrib><creatorcontrib>Lozano, M</creatorcontrib><creatorcontrib>Prezado, Y</creatorcontrib><creatorcontrib>Dos Santos, M</creatorcontrib><creatorcontrib>Guardiola, C</creatorcontrib><creatorcontrib>Montarou, G</creatorcontrib><creatorcontrib>Prieto-Pena, J</creatorcontrib><creatorcontrib>Pardo-Montero, Juan</creatorcontrib><title>Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes</title><title>Physics in medicine &amp; biology</title><addtitle>PMB</addtitle><addtitle>Phys. Med. Biol</addtitle><description>The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.</description><subject>dosimetry</subject><subject>hadrontherapy</subject><subject>Heavy Ion Radiotherapy - instrumentation</subject><subject>Humans</subject><subject>LET</subject><subject>Linear Energy Transfer</subject><subject>microdosimetry</subject><subject>Monte Carlo Method</subject><subject>Physics</subject><subject>Protons</subject><subject>Radiometry - instrumentation</subject><subject>Silicon</subject><subject>silicon detectors</subject><issn>0031-9155</issn><issn>1361-6560</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1LxDAQhoMo7vrxD0R6Ej3UzTRp2j3K-gkrXhS8hbSZslnapiat4r83ZXXxIB7CQOZ534GHkBOgl0DzfEYpg3gOaToTMAOYccrEDpkCExCLVNBdMt0iE3Lg_ZpSgDzh-2SSZCBYnsOUvD6i8oPDBts-slVUKlfYNjLhNaZ0VltvGuydKSNtfJjF0Ieljz5Mv4qGuneqX5k2YteRN7UpQ04bq9Efkb1K1R6Pv-chebm9eV7cx8unu4fF1TIuObA-VhUqYAmqXFUZKxAK4JRXCS-QotDzlCZUacFSkTEoswRFTrOCgUgqnYFS7JBcbHpXqpadM41yn9IqI--vlnL8C1oglPB3COz5hu2cfRvQ97IxvsS6Vi3awUvI5pSLNBcsoHyDBgfeO6y23UDl6F-OcuUoVwqQAHL0H2Kn3xeGokG9Df0ID8DZBjC2k2s7uDbIkV1T_GqRna4CSP8A_z3-BXWzm3U</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Gómez, F</creator><creator>Fleta, C</creator><creator>Esteban, S</creator><creator>Quirion, D</creator><creator>Pellegrini, G</creator><creator>Lozano, M</creator><creator>Prezado, Y</creator><creator>Dos Santos, M</creator><creator>Guardiola, C</creator><creator>Montarou, G</creator><creator>Prieto-Pena, J</creator><creator>Pardo-Montero, Juan</creator><general>IOP Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope></search><sort><creationdate>20160607</creationdate><title>Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes</title><author>Gómez, F ; Fleta, C ; Esteban, S ; Quirion, D ; Pellegrini, G ; Lozano, M ; Prezado, Y ; Dos Santos, M ; Guardiola, C ; Montarou, G ; Prieto-Pena, J ; Pardo-Montero, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-afea132ea8af73be1b1404f24be0e6d95020ad6356731c72e6807b3162fd71aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>dosimetry</topic><topic>hadrontherapy</topic><topic>Heavy Ion Radiotherapy - instrumentation</topic><topic>Humans</topic><topic>LET</topic><topic>Linear Energy Transfer</topic><topic>microdosimetry</topic><topic>Monte Carlo Method</topic><topic>Physics</topic><topic>Protons</topic><topic>Radiometry - instrumentation</topic><topic>Silicon</topic><topic>silicon detectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, F</creatorcontrib><creatorcontrib>Fleta, C</creatorcontrib><creatorcontrib>Esteban, S</creatorcontrib><creatorcontrib>Quirion, D</creatorcontrib><creatorcontrib>Pellegrini, G</creatorcontrib><creatorcontrib>Lozano, M</creatorcontrib><creatorcontrib>Prezado, Y</creatorcontrib><creatorcontrib>Dos Santos, M</creatorcontrib><creatorcontrib>Guardiola, C</creatorcontrib><creatorcontrib>Montarou, G</creatorcontrib><creatorcontrib>Prieto-Pena, J</creatorcontrib><creatorcontrib>Pardo-Montero, Juan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physics in medicine &amp; biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, F</au><au>Fleta, C</au><au>Esteban, S</au><au>Quirion, D</au><au>Pellegrini, G</au><au>Lozano, M</au><au>Prezado, Y</au><au>Dos Santos, M</au><au>Guardiola, C</au><au>Montarou, G</au><au>Prieto-Pena, J</au><au>Pardo-Montero, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes</atitle><jtitle>Physics in medicine &amp; biology</jtitle><stitle>PMB</stitle><addtitle>Phys. Med. Biol</addtitle><date>2016-06-07</date><risdate>2016</risdate><volume>61</volume><issue>11</issue><spage>4036</spage><epage>4047</epage><pages>4036-4047</pages><issn>0031-9155</issn><eissn>1361-6560</eissn><coden>PHMBA7</coden><abstract>The commissioning of an ion beam for hadrontherapy requires the evaluation of the biologically weighted effective dose that results from the microdosimetric properties of the therapy beam. The spectra of the energy imparted at cellular and sub-cellular scales are fundamental to the determination of the biological effect of the beam. These magnitudes are related to the microdosimetric distributions of the ion beam at different points along the beam path. This work is dedicated to the measurement of microdosimetric spectra at several depths in the central axis of a 12C beam with an energy of 94.98 AMeV using a novel 3D ultrathin silicon diode detector. Data is compared with Monte Carlo calculations providing an excellent agreement (deviations are less than 2% for the most probable lineal energy value) up to the Bragg peak. The results show the feasibility to determine with high precision the lineal energy transfer spectrum of a hadrontherapy beam with these silicon devices.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>27163881</pmid><doi>10.1088/0031-9155/61/11/4036</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9155
ispartof Physics in medicine & biology, 2016-06, Vol.61 (11), p.4036-4047
issn 0031-9155
1361-6560
language eng
recordid cdi_hal_primary_oai_HAL_hal_03610204v1
source MEDLINE; IOP Publishing Journals; Institute of Physics (IOP) Journals - HEAL-Link
subjects dosimetry
hadrontherapy
Heavy Ion Radiotherapy - instrumentation
Humans
LET
Linear Energy Transfer
microdosimetry
Monte Carlo Method
Physics
Protons
Radiometry - instrumentation
Silicon
silicon detectors
title Measurement of carbon ion microdosimetric distributions with ultrathin 3D silicon diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T08%3A01%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20carbon%20ion%20microdosimetric%20distributions%20with%20ultrathin%203D%20silicon%20diodes&rft.jtitle=Physics%20in%20medicine%20&%20biology&rft.au=G%C3%B3mez,%20F&rft.date=2016-06-07&rft.volume=61&rft.issue=11&rft.spage=4036&rft.epage=4047&rft.pages=4036-4047&rft.issn=0031-9155&rft.eissn=1361-6560&rft.coden=PHMBA7&rft_id=info:doi/10.1088/0031-9155/61/11/4036&rft_dat=%3Cproquest_hal_p%3E1790465863%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1790465863&rft_id=info:pmid/27163881&rfr_iscdi=true