A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions
This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the infl...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2022-03, Vol.30 (2), p.728-739 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 739 |
---|---|
container_issue | 2 |
container_start_page | 728 |
container_title | IEEE transactions on control systems technology |
container_volume | 30 |
creator | Le Rhun, Arthur Bonnans, Frederic De Nunzio, Giovanni Leroy, Thomas Martinon, Pierre |
description | This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part. |
doi_str_mv | 10.1109/TCST.2021.3073607 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03608048v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419735</ieee_id><sourcerecordid>2627837537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxBdRsFY_gHgJePKQun-zm2Mt1QoVhaZel03yUrekSd1NC_32bkjxNI_HzDD8ELoneEIITp-z2SqbUEzJhGHJEiwv0IgIoWKsEnEZbpywOBEsuUY33m8xJlxQOULZNHqxNRyhjuYNuM0p-jCN2cAOmi5adc50EH5V66LF_NtH66YEF325Nje5ra3vbBFlzlRV0FnblLazbeNv0VVlag93Zx2j9es8my3i5efb-2y6jAsmcRcDx3nJJEuBYl4keZXztOSCCVVRLguTY1NxY1JeGACigOVJWoAiTJmSFiJnY_Q09P6YWu-d3Rl30q2xejFd6v6HAwmFuTqS4H0cvHvX_h7Ad3rbHlwT5mmaUKmYFGHKGJHBVbjWewfVfy3Bugete9C6B63PoEPmYchYAPj3p5ykkgn2B9FGeOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627837537</pqid></control><display><type>article</type><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creator><creatorcontrib>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creatorcontrib><description>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2021.3073607</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Batteries ; Bilevel optimization ; Computing costs ; Driving conditions ; Electric motors ; Electric power ; Energy management ; Engineering Sciences ; Engines ; Hybrid electric vehicles ; hybrid electric vehicles (EVs) ; Mechanics ; Optimization ; State of charge ; Statistical analysis ; stochastic dynamic programming (SDP) ; Stochastic processes ; Torque ; Traffic ; traffic data clustering ; Traffic information ; Traffic management ; Traffic speed</subject><ispartof>IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.728-739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</citedby><cites>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</cites><orcidid>0000-0003-1179-8735 ; 0000-0003-0571-2376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://ifp.hal.science/hal-03608048$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>Bilevel optimization</subject><subject>Computing costs</subject><subject>Driving conditions</subject><subject>Electric motors</subject><subject>Electric power</subject><subject>Energy management</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Hybrid electric vehicles</subject><subject>hybrid electric vehicles (EVs)</subject><subject>Mechanics</subject><subject>Optimization</subject><subject>State of charge</subject><subject>Statistical analysis</subject><subject>stochastic dynamic programming (SDP)</subject><subject>Stochastic processes</subject><subject>Torque</subject><subject>Traffic</subject><subject>traffic data clustering</subject><subject>Traffic information</subject><subject>Traffic management</subject><subject>Traffic speed</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AUxBdRsFY_gHgJePKQun-zm2Mt1QoVhaZel03yUrekSd1NC_32bkjxNI_HzDD8ELoneEIITp-z2SqbUEzJhGHJEiwv0IgIoWKsEnEZbpywOBEsuUY33m8xJlxQOULZNHqxNRyhjuYNuM0p-jCN2cAOmi5adc50EH5V66LF_NtH66YEF325Nje5ra3vbBFlzlRV0FnblLazbeNv0VVlag93Zx2j9es8my3i5efb-2y6jAsmcRcDx3nJJEuBYl4keZXztOSCCVVRLguTY1NxY1JeGACigOVJWoAiTJmSFiJnY_Q09P6YWu-d3Rl30q2xejFd6v6HAwmFuTqS4H0cvHvX_h7Ad3rbHlwT5mmaUKmYFGHKGJHBVbjWewfVfy3Bugete9C6B63PoEPmYchYAPj3p5ykkgn2B9FGeOk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Le Rhun, Arthur</creator><creator>Bonnans, Frederic</creator><creator>De Nunzio, Giovanni</creator><creator>Leroy, Thomas</creator><creator>Martinon, Pierre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid></search><sort><creationdate>202203</creationdate><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><author>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>Bilevel optimization</topic><topic>Computing costs</topic><topic>Driving conditions</topic><topic>Electric motors</topic><topic>Electric power</topic><topic>Energy management</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Hybrid electric vehicles</topic><topic>hybrid electric vehicles (EVs)</topic><topic>Mechanics</topic><topic>Optimization</topic><topic>State of charge</topic><topic>Statistical analysis</topic><topic>stochastic dynamic programming (SDP)</topic><topic>Stochastic processes</topic><topic>Torque</topic><topic>Traffic</topic><topic>traffic data clustering</topic><topic>Traffic information</topic><topic>Traffic management</topic><topic>Traffic speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le Rhun, Arthur</au><au>Bonnans, Frederic</au><au>De Nunzio, Giovanni</au><au>Leroy, Thomas</au><au>Martinon, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-03</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>728</spage><epage>739</epage><pages>728-739</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2021.3073607</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.728-739 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03608048v1 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Algorithms Batteries Bilevel optimization Computing costs Driving conditions Electric motors Electric power Energy management Engineering Sciences Engines Hybrid electric vehicles hybrid electric vehicles (EVs) Mechanics Optimization State of charge Statistical analysis stochastic dynamic programming (SDP) Stochastic processes Torque Traffic traffic data clustering Traffic information Traffic management Traffic speed |
title | A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bilevel%20Energy%20Management%20Strategy%20for%20HEVs%20Under%20Probabilistic%20Traffic%20Conditions&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Le%20Rhun,%20Arthur&rft.date=2022-03&rft.volume=30&rft.issue=2&rft.spage=728&rft.epage=739&rft.pages=728-739&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2021.3073607&rft_dat=%3Cproquest_RIE%3E2627837537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627837537&rft_id=info:pmid/&rft_ieee_id=9419735&rfr_iscdi=true |