A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions

This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the infl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2022-03, Vol.30 (2), p.728-739
Hauptverfasser: Le Rhun, Arthur, Bonnans, Frederic, De Nunzio, Giovanni, Leroy, Thomas, Martinon, Pierre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 739
container_issue 2
container_start_page 728
container_title IEEE transactions on control systems technology
container_volume 30
creator Le Rhun, Arthur
Bonnans, Frederic
De Nunzio, Giovanni
Leroy, Thomas
Martinon, Pierre
description This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.
doi_str_mv 10.1109/TCST.2021.3073607
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03608048v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9419735</ieee_id><sourcerecordid>2627837537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AUxBdRsFY_gHgJePKQun-zm2Mt1QoVhaZel03yUrekSd1NC_32bkjxNI_HzDD8ELoneEIITp-z2SqbUEzJhGHJEiwv0IgIoWKsEnEZbpywOBEsuUY33m8xJlxQOULZNHqxNRyhjuYNuM0p-jCN2cAOmi5adc50EH5V66LF_NtH66YEF325Nje5ra3vbBFlzlRV0FnblLazbeNv0VVlag93Zx2j9es8my3i5efb-2y6jAsmcRcDx3nJJEuBYl4keZXztOSCCVVRLguTY1NxY1JeGACigOVJWoAiTJmSFiJnY_Q09P6YWu-d3Rl30q2xejFd6v6HAwmFuTqS4H0cvHvX_h7Ad3rbHlwT5mmaUKmYFGHKGJHBVbjWewfVfy3Bugete9C6B63PoEPmYchYAPj3p5ykkgn2B9FGeOk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627837537</pqid></control><display><type>article</type><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><source>IEEE Electronic Library (IEL)</source><creator>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creator><creatorcontrib>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</creatorcontrib><description>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2021.3073607</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Algorithms ; Batteries ; Bilevel optimization ; Computing costs ; Driving conditions ; Electric motors ; Electric power ; Energy management ; Engineering Sciences ; Engines ; Hybrid electric vehicles ; hybrid electric vehicles (EVs) ; Mechanics ; Optimization ; State of charge ; Statistical analysis ; stochastic dynamic programming (SDP) ; Stochastic processes ; Torque ; Traffic ; traffic data clustering ; Traffic information ; Traffic management ; Traffic speed</subject><ispartof>IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.728-739</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</citedby><cites>FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</cites><orcidid>0000-0003-1179-8735 ; 0000-0003-0571-2376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9419735$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9419735$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://ifp.hal.science/hal-03608048$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</description><subject>Acceleration</subject><subject>Algorithms</subject><subject>Batteries</subject><subject>Bilevel optimization</subject><subject>Computing costs</subject><subject>Driving conditions</subject><subject>Electric motors</subject><subject>Electric power</subject><subject>Energy management</subject><subject>Engineering Sciences</subject><subject>Engines</subject><subject>Hybrid electric vehicles</subject><subject>hybrid electric vehicles (EVs)</subject><subject>Mechanics</subject><subject>Optimization</subject><subject>State of charge</subject><subject>Statistical analysis</subject><subject>stochastic dynamic programming (SDP)</subject><subject>Stochastic processes</subject><subject>Torque</subject><subject>Traffic</subject><subject>traffic data clustering</subject><subject>Traffic information</subject><subject>Traffic management</subject><subject>Traffic speed</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AUxBdRsFY_gHgJePKQun-zm2Mt1QoVhaZel03yUrekSd1NC_32bkjxNI_HzDD8ELoneEIITp-z2SqbUEzJhGHJEiwv0IgIoWKsEnEZbpywOBEsuUY33m8xJlxQOULZNHqxNRyhjuYNuM0p-jCN2cAOmi5adc50EH5V66LF_NtH66YEF325Nje5ra3vbBFlzlRV0FnblLazbeNv0VVlag93Zx2j9es8my3i5efb-2y6jAsmcRcDx3nJJEuBYl4keZXztOSCCVVRLguTY1NxY1JeGACigOVJWoAiTJmSFiJnY_Q09P6YWu-d3Rl30q2xejFd6v6HAwmFuTqS4H0cvHvX_h7Ad3rbHlwT5mmaUKmYFGHKGJHBVbjWewfVfy3Bugete9C6B63PoEPmYchYAPj3p5ykkgn2B9FGeOk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Le Rhun, Arthur</creator><creator>Bonnans, Frederic</creator><creator>De Nunzio, Giovanni</creator><creator>Leroy, Thomas</creator><creator>Martinon, Pierre</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid></search><sort><creationdate>202203</creationdate><title>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</title><author>Le Rhun, Arthur ; Bonnans, Frederic ; De Nunzio, Giovanni ; Leroy, Thomas ; Martinon, Pierre</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-e40bd3739e204c6bfb49d45358f247cab0af4aa94caee18e3b69ce8138ad2c5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acceleration</topic><topic>Algorithms</topic><topic>Batteries</topic><topic>Bilevel optimization</topic><topic>Computing costs</topic><topic>Driving conditions</topic><topic>Electric motors</topic><topic>Electric power</topic><topic>Energy management</topic><topic>Engineering Sciences</topic><topic>Engines</topic><topic>Hybrid electric vehicles</topic><topic>hybrid electric vehicles (EVs)</topic><topic>Mechanics</topic><topic>Optimization</topic><topic>State of charge</topic><topic>Statistical analysis</topic><topic>stochastic dynamic programming (SDP)</topic><topic>Stochastic processes</topic><topic>Torque</topic><topic>Traffic</topic><topic>traffic data clustering</topic><topic>Traffic information</topic><topic>Traffic management</topic><topic>Traffic speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Le Rhun, Arthur</creatorcontrib><creatorcontrib>Bonnans, Frederic</creatorcontrib><creatorcontrib>De Nunzio, Giovanni</creatorcontrib><creatorcontrib>Leroy, Thomas</creatorcontrib><creatorcontrib>Martinon, Pierre</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le Rhun, Arthur</au><au>Bonnans, Frederic</au><au>De Nunzio, Giovanni</au><au>Leroy, Thomas</au><au>Martinon, Pierre</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2022-03</date><risdate>2022</risdate><volume>30</volume><issue>2</issue><spage>728</spage><epage>739</epage><pages>728-739</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This work proposes a new approach for the optimal energy management of a hybrid electric vehicle (EV) considering traffic conditions. The method is based on a bilevel decomposition. At the microscopic level, the offline part computes cost maps due to a stochastic optimization that considers the influence of traffic, in terms of speed/acceleration probability distributions. At the online macroscopic level, a deterministic optimization computes the ideal state of charge at the end of each road segment using the computed cost maps. The optimal torque split can then be recovered according to the cost maps and this SoC target sequence. Since the high computational cost due to the uncertainty of traffic conditions has been managed offline, the online part should be fast enough for real-time implementation on board the vehicle. Errors due to discretization and computation in the proposed algorithm have been studied. Finally, we present numerical simulations using actual traffic data and compare the proposed bilevel method to the best possible consumption, obtained by a deterministic optimization with full knowledge of future traffic conditions, as well as to an established solution for energy management of a hybrid EV. The solutions show a reasonable overconsumption compared with deterministic optimization and manageable computational times for both the offline and the online part.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2021.3073607</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1179-8735</orcidid><orcidid>https://orcid.org/0000-0003-0571-2376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2022-03, Vol.30 (2), p.728-739
issn 1063-6536
1558-0865
language eng
recordid cdi_hal_primary_oai_HAL_hal_03608048v1
source IEEE Electronic Library (IEL)
subjects Acceleration
Algorithms
Batteries
Bilevel optimization
Computing costs
Driving conditions
Electric motors
Electric power
Energy management
Engineering Sciences
Engines
Hybrid electric vehicles
hybrid electric vehicles (EVs)
Mechanics
Optimization
State of charge
Statistical analysis
stochastic dynamic programming (SDP)
Stochastic processes
Torque
Traffic
traffic data clustering
Traffic information
Traffic management
Traffic speed
title A Bilevel Energy Management Strategy for HEVs Under Probabilistic Traffic Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T21%3A42%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Bilevel%20Energy%20Management%20Strategy%20for%20HEVs%20Under%20Probabilistic%20Traffic%20Conditions&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Le%20Rhun,%20Arthur&rft.date=2022-03&rft.volume=30&rft.issue=2&rft.spage=728&rft.epage=739&rft.pages=728-739&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2021.3073607&rft_dat=%3Cproquest_RIE%3E2627837537%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627837537&rft_id=info:pmid/&rft_ieee_id=9419735&rfr_iscdi=true