Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity

Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by acc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2021-02, Vol.45 (2), p.176-190
Hauptverfasser: Attal, Riadh, Grange, Stéphane, Baroth, Julien, Dahmani, Abdelnasser
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue 2
container_start_page 176
container_title International journal for numerical and analytical methods in geomechanics
container_volume 45
creator Attal, Riadh
Grange, Stéphane
Baroth, Julien
Dahmani, Abdelnasser
description Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.
doi_str_mv 10.1002/nag.3138
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03607411v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475077738</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</originalsourceid><addsrcrecordid>eNp10UFLwzAUB_AgCs4p-BEKXhSsvixtkx6H6BSmXvQc0jTZIl0zk3RjnvwIgt_QT2LqxJunkLzfe4T3R-gYwwUGGF22YnZBMGE7aIChLNKS5WQXDYAUJC2hwPvowPsXAMhjdYDe7pWci9ZI0Xy9fyydrURlGuODkYm2btE1IhjbJlYnYa4Sb010nz64TobOqcS0QTkhe3OeCClt1wbTzvrenwaxiuVZbJwr4ZJ1vCYr1VhpwuYQ7WnReHX0ew7R883109VtOn2c3F2Np6kgGLM0y0ZiVGeSSUIZpoxqAKlrnZeioKSURS4pxTVABVnJNKmKumSY4SKvatCRDNHZdu5cNHzpzEK4DbfC8NvxlPdvcTdAM4xXONqTrY2beO2UD_zFdq6N3-OjjOZAKSUsqtOtks5675T-G4uB9ynwmALvU4g03dK1adTmX8cfxpMf_w1a0Ism</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475077738</pqid></control><display><type>article</type><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><source>Access via Wiley Online Library</source><creator>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</creator><creatorcontrib>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</creatorcontrib><description>Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3138</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Civil Engineering ; Collocation methods ; Design standards ; Distribution functions ; Earthquake loads ; Earthquake resistance ; Earthquakes ; Engineering Sciences ; Eurocode 8 ; Frame structures ; macro‐element ; mean shear wave velocities ; mechanical‐probabilistic coupling ; nonlinear constitutive law ; Probability theory ; Random variables ; Reinforced concrete ; S waves ; Seismic activity ; Seismic analysis ; Seismic hazard ; Seismic response ; Seismic surveys ; Seismic velocities ; Sensitivity ; Shear ; Shear wave velocities ; Soil ; soil class ; Soil mechanics ; Soil-structure interaction ; Soils ; Stochasticity ; Structures ; uncertainty propagation ; Velocity ; Vulnerability ; Wave velocity</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (2), p.176-190</ispartof><rights>2020 John Wiley &amp; Sons, Ltd.</rights><rights>2021 John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</cites><orcidid>0000-0002-7766-0483 ; 0000-0002-7877-1855 ; 0000-0001-5654-7812 ; 0000-0001-5261-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03607411$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Attal, Riadh</creatorcontrib><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Baroth, Julien</creatorcontrib><creatorcontrib>Dahmani, Abdelnasser</creatorcontrib><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><title>International journal for numerical and analytical methods in geomechanics</title><description>Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</description><subject>Civil Engineering</subject><subject>Collocation methods</subject><subject>Design standards</subject><subject>Distribution functions</subject><subject>Earthquake loads</subject><subject>Earthquake resistance</subject><subject>Earthquakes</subject><subject>Engineering Sciences</subject><subject>Eurocode 8</subject><subject>Frame structures</subject><subject>macro‐element</subject><subject>mean shear wave velocities</subject><subject>mechanical‐probabilistic coupling</subject><subject>nonlinear constitutive law</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Reinforced concrete</subject><subject>S waves</subject><subject>Seismic activity</subject><subject>Seismic analysis</subject><subject>Seismic hazard</subject><subject>Seismic response</subject><subject>Seismic surveys</subject><subject>Seismic velocities</subject><subject>Sensitivity</subject><subject>Shear</subject><subject>Shear wave velocities</subject><subject>Soil</subject><subject>soil class</subject><subject>Soil mechanics</subject><subject>Soil-structure interaction</subject><subject>Soils</subject><subject>Stochasticity</subject><subject>Structures</subject><subject>uncertainty propagation</subject><subject>Velocity</subject><subject>Vulnerability</subject><subject>Wave velocity</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10UFLwzAUB_AgCs4p-BEKXhSsvixtkx6H6BSmXvQc0jTZIl0zk3RjnvwIgt_QT2LqxJunkLzfe4T3R-gYwwUGGF22YnZBMGE7aIChLNKS5WQXDYAUJC2hwPvowPsXAMhjdYDe7pWci9ZI0Xy9fyydrURlGuODkYm2btE1IhjbJlYnYa4Sb010nz64TobOqcS0QTkhe3OeCClt1wbTzvrenwaxiuVZbJwr4ZJ1vCYr1VhpwuYQ7WnReHX0ew7R883109VtOn2c3F2Np6kgGLM0y0ZiVGeSSUIZpoxqAKlrnZeioKSURS4pxTVABVnJNKmKumSY4SKvatCRDNHZdu5cNHzpzEK4DbfC8NvxlPdvcTdAM4xXONqTrY2beO2UD_zFdq6N3-OjjOZAKSUsqtOtks5675T-G4uB9ynwmALvU4g03dK1adTmX8cfxpMf_w1a0Ism</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Attal, Riadh</creator><creator>Grange, Stéphane</creator><creator>Baroth, Julien</creator><creator>Dahmani, Abdelnasser</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><orcidid>https://orcid.org/0000-0002-7877-1855</orcidid><orcidid>https://orcid.org/0000-0001-5654-7812</orcidid><orcidid>https://orcid.org/0000-0001-5261-9284</orcidid></search><sort><creationdate>20210201</creationdate><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><author>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Collocation methods</topic><topic>Design standards</topic><topic>Distribution functions</topic><topic>Earthquake loads</topic><topic>Earthquake resistance</topic><topic>Earthquakes</topic><topic>Engineering Sciences</topic><topic>Eurocode 8</topic><topic>Frame structures</topic><topic>macro‐element</topic><topic>mean shear wave velocities</topic><topic>mechanical‐probabilistic coupling</topic><topic>nonlinear constitutive law</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Reinforced concrete</topic><topic>S waves</topic><topic>Seismic activity</topic><topic>Seismic analysis</topic><topic>Seismic hazard</topic><topic>Seismic response</topic><topic>Seismic surveys</topic><topic>Seismic velocities</topic><topic>Sensitivity</topic><topic>Shear</topic><topic>Shear wave velocities</topic><topic>Soil</topic><topic>soil class</topic><topic>Soil mechanics</topic><topic>Soil-structure interaction</topic><topic>Soils</topic><topic>Stochasticity</topic><topic>Structures</topic><topic>uncertainty propagation</topic><topic>Velocity</topic><topic>Vulnerability</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attal, Riadh</creatorcontrib><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Baroth, Julien</creatorcontrib><creatorcontrib>Dahmani, Abdelnasser</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attal, Riadh</au><au>Grange, Stéphane</au><au>Baroth, Julien</au><au>Dahmani, Abdelnasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>45</volume><issue>2</issue><spage>176</spage><epage>190</epage><pages>176-190</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3138</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><orcidid>https://orcid.org/0000-0002-7877-1855</orcidid><orcidid>https://orcid.org/0000-0001-5654-7812</orcidid><orcidid>https://orcid.org/0000-0001-5261-9284</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (2), p.176-190
issn 0363-9061
1096-9853
language eng
recordid cdi_hal_primary_oai_HAL_hal_03607411v1
source Access via Wiley Online Library
subjects Civil Engineering
Collocation methods
Design standards
Distribution functions
Earthquake loads
Earthquake resistance
Earthquakes
Engineering Sciences
Eurocode 8
Frame structures
macro‐element
mean shear wave velocities
mechanical‐probabilistic coupling
nonlinear constitutive law
Probability theory
Random variables
Reinforced concrete
S waves
Seismic activity
Seismic analysis
Seismic hazard
Seismic response
Seismic surveys
Seismic velocities
Sensitivity
Shear
Shear wave velocities
Soil
soil class
Soil mechanics
Soil-structure interaction
Soils
Stochasticity
Structures
uncertainty propagation
Velocity
Vulnerability
Wave velocity
title Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%E2%80%90probabilistic%20formulation%20of%20the%20soil%E2%80%93structure%20interaction,%20accounting%20for%20the%20average%20shear%20wave%20velocity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Attal,%20Riadh&rft.date=2021-02-01&rft.volume=45&rft.issue=2&rft.spage=176&rft.epage=190&rft.pages=176-190&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3138&rft_dat=%3Cproquest_hal_p%3E2475077738%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475077738&rft_id=info:pmid/&rfr_iscdi=true