Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity
Summary This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by acc...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2021-02, Vol.45 (2), p.176-190 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | 2 |
container_start_page | 176 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 45 |
creator | Attal, Riadh Grange, Stéphane Baroth, Julien Dahmani, Abdelnasser |
description | Summary
This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance. |
doi_str_mv | 10.1002/nag.3138 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03607411v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2475077738</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</originalsourceid><addsrcrecordid>eNp10UFLwzAUB_AgCs4p-BEKXhSsvixtkx6H6BSmXvQc0jTZIl0zk3RjnvwIgt_QT2LqxJunkLzfe4T3R-gYwwUGGF22YnZBMGE7aIChLNKS5WQXDYAUJC2hwPvowPsXAMhjdYDe7pWci9ZI0Xy9fyydrURlGuODkYm2btE1IhjbJlYnYa4Sb010nz64TobOqcS0QTkhe3OeCClt1wbTzvrenwaxiuVZbJwr4ZJ1vCYr1VhpwuYQ7WnReHX0ew7R883109VtOn2c3F2Np6kgGLM0y0ZiVGeSSUIZpoxqAKlrnZeioKSURS4pxTVABVnJNKmKumSY4SKvatCRDNHZdu5cNHzpzEK4DbfC8NvxlPdvcTdAM4xXONqTrY2beO2UD_zFdq6N3-OjjOZAKSUsqtOtks5675T-G4uB9ynwmALvU4g03dK1adTmX8cfxpMf_w1a0Ism</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2475077738</pqid></control><display><type>article</type><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><source>Access via Wiley Online Library</source><creator>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</creator><creatorcontrib>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</creatorcontrib><description>Summary
This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3138</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Civil Engineering ; Collocation methods ; Design standards ; Distribution functions ; Earthquake loads ; Earthquake resistance ; Earthquakes ; Engineering Sciences ; Eurocode 8 ; Frame structures ; macro‐element ; mean shear wave velocities ; mechanical‐probabilistic coupling ; nonlinear constitutive law ; Probability theory ; Random variables ; Reinforced concrete ; S waves ; Seismic activity ; Seismic analysis ; Seismic hazard ; Seismic response ; Seismic surveys ; Seismic velocities ; Sensitivity ; Shear ; Shear wave velocities ; Soil ; soil class ; Soil mechanics ; Soil-structure interaction ; Soils ; Stochasticity ; Structures ; uncertainty propagation ; Velocity ; Vulnerability ; Wave velocity</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (2), p.176-190</ispartof><rights>2020 John Wiley & Sons, Ltd.</rights><rights>2021 John Wiley & Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</cites><orcidid>0000-0002-7766-0483 ; 0000-0002-7877-1855 ; 0000-0001-5654-7812 ; 0000-0001-5261-9284</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3138$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3138$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03607411$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Attal, Riadh</creatorcontrib><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Baroth, Julien</creatorcontrib><creatorcontrib>Dahmani, Abdelnasser</creatorcontrib><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><title>International journal for numerical and analytical methods in geomechanics</title><description>Summary
This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</description><subject>Civil Engineering</subject><subject>Collocation methods</subject><subject>Design standards</subject><subject>Distribution functions</subject><subject>Earthquake loads</subject><subject>Earthquake resistance</subject><subject>Earthquakes</subject><subject>Engineering Sciences</subject><subject>Eurocode 8</subject><subject>Frame structures</subject><subject>macro‐element</subject><subject>mean shear wave velocities</subject><subject>mechanical‐probabilistic coupling</subject><subject>nonlinear constitutive law</subject><subject>Probability theory</subject><subject>Random variables</subject><subject>Reinforced concrete</subject><subject>S waves</subject><subject>Seismic activity</subject><subject>Seismic analysis</subject><subject>Seismic hazard</subject><subject>Seismic response</subject><subject>Seismic surveys</subject><subject>Seismic velocities</subject><subject>Sensitivity</subject><subject>Shear</subject><subject>Shear wave velocities</subject><subject>Soil</subject><subject>soil class</subject><subject>Soil mechanics</subject><subject>Soil-structure interaction</subject><subject>Soils</subject><subject>Stochasticity</subject><subject>Structures</subject><subject>uncertainty propagation</subject><subject>Velocity</subject><subject>Vulnerability</subject><subject>Wave velocity</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp10UFLwzAUB_AgCs4p-BEKXhSsvixtkx6H6BSmXvQc0jTZIl0zk3RjnvwIgt_QT2LqxJunkLzfe4T3R-gYwwUGGF22YnZBMGE7aIChLNKS5WQXDYAUJC2hwPvowPsXAMhjdYDe7pWci9ZI0Xy9fyydrURlGuODkYm2btE1IhjbJlYnYa4Sb010nz64TobOqcS0QTkhe3OeCClt1wbTzvrenwaxiuVZbJwr4ZJ1vCYr1VhpwuYQ7WnReHX0ew7R883109VtOn2c3F2Np6kgGLM0y0ZiVGeSSUIZpoxqAKlrnZeioKSURS4pxTVABVnJNKmKumSY4SKvatCRDNHZdu5cNHzpzEK4DbfC8NvxlPdvcTdAM4xXONqTrY2beO2UD_zFdq6N3-OjjOZAKSUsqtOtks5675T-G4uB9ynwmALvU4g03dK1adTmX8cfxpMf_w1a0Ism</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Attal, Riadh</creator><creator>Grange, Stéphane</creator><creator>Baroth, Julien</creator><creator>Dahmani, Abdelnasser</creator><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><orcidid>https://orcid.org/0000-0002-7877-1855</orcidid><orcidid>https://orcid.org/0000-0001-5654-7812</orcidid><orcidid>https://orcid.org/0000-0001-5261-9284</orcidid></search><sort><creationdate>20210201</creationdate><title>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</title><author>Attal, Riadh ; Grange, Stéphane ; Baroth, Julien ; Dahmani, Abdelnasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3118-442a2d4c8c3781787f00cfdf59a6739c65c771d00b0498f3b6d9818165bd0f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Civil Engineering</topic><topic>Collocation methods</topic><topic>Design standards</topic><topic>Distribution functions</topic><topic>Earthquake loads</topic><topic>Earthquake resistance</topic><topic>Earthquakes</topic><topic>Engineering Sciences</topic><topic>Eurocode 8</topic><topic>Frame structures</topic><topic>macro‐element</topic><topic>mean shear wave velocities</topic><topic>mechanical‐probabilistic coupling</topic><topic>nonlinear constitutive law</topic><topic>Probability theory</topic><topic>Random variables</topic><topic>Reinforced concrete</topic><topic>S waves</topic><topic>Seismic activity</topic><topic>Seismic analysis</topic><topic>Seismic hazard</topic><topic>Seismic response</topic><topic>Seismic surveys</topic><topic>Seismic velocities</topic><topic>Sensitivity</topic><topic>Shear</topic><topic>Shear wave velocities</topic><topic>Soil</topic><topic>soil class</topic><topic>Soil mechanics</topic><topic>Soil-structure interaction</topic><topic>Soils</topic><topic>Stochasticity</topic><topic>Structures</topic><topic>uncertainty propagation</topic><topic>Velocity</topic><topic>Vulnerability</topic><topic>Wave velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attal, Riadh</creatorcontrib><creatorcontrib>Grange, Stéphane</creatorcontrib><creatorcontrib>Baroth, Julien</creatorcontrib><creatorcontrib>Dahmani, Abdelnasser</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Attal, Riadh</au><au>Grange, Stéphane</au><au>Baroth, Julien</au><au>Dahmani, Abdelnasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>45</volume><issue>2</issue><spage>176</spage><epage>190</epage><pages>176-190</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>Summary
This work proposes a mechanical‐probabilistic formulation of the soil–structure interaction, taking into account the variability of the mean velocity of shear wave seismic load. This work aims at studying the sensitivity of the seismic response of a reinforced concrete frame structure by accounting for different seismic scenarios. For this purpose, the simplified model of a two‐story structure system has been developed. This model is based both on a macro‐element approach and on a stochastic collocation method. The sensitivity of the maximum displacement of the structure under different average shear wave velocities is studied. This aim in view, Gaussian or lognormal random variables are arbitrarily chosen to model this velocity. Analysis of the seismic vulnerability of the soil–structure system leads to cumulative distribution functions, which sometimes show significant differences for the same soil class in the sense of the European standard for the design of structures for earthquake resistance.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3138</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-7766-0483</orcidid><orcidid>https://orcid.org/0000-0002-7877-1855</orcidid><orcidid>https://orcid.org/0000-0001-5654-7812</orcidid><orcidid>https://orcid.org/0000-0001-5261-9284</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2021-02, Vol.45 (2), p.176-190 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03607411v1 |
source | Access via Wiley Online Library |
subjects | Civil Engineering Collocation methods Design standards Distribution functions Earthquake loads Earthquake resistance Earthquakes Engineering Sciences Eurocode 8 Frame structures macro‐element mean shear wave velocities mechanical‐probabilistic coupling nonlinear constitutive law Probability theory Random variables Reinforced concrete S waves Seismic activity Seismic analysis Seismic hazard Seismic response Seismic surveys Seismic velocities Sensitivity Shear Shear wave velocities Soil soil class Soil mechanics Soil-structure interaction Soils Stochasticity Structures uncertainty propagation Velocity Vulnerability Wave velocity |
title | Mechanical‐probabilistic formulation of the soil–structure interaction, accounting for the average shear wave velocity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T15%3A06%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%E2%80%90probabilistic%20formulation%20of%20the%20soil%E2%80%93structure%20interaction,%20accounting%20for%20the%20average%20shear%20wave%20velocity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Attal,%20Riadh&rft.date=2021-02-01&rft.volume=45&rft.issue=2&rft.spage=176&rft.epage=190&rft.pages=176-190&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3138&rft_dat=%3Cproquest_hal_p%3E2475077738%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2475077738&rft_id=info:pmid/&rfr_iscdi=true |