Computing maximum k-defective cliques in massive graphs

•Properties of the maximum k-defective clique problem.•A novel branch-and-bound based exact algorithm.•Graph preprocessing, two-hop reduction and color-bound techniques for improving the performance of branch-and-bound.•Numerical results on a wide range of real graphs. A k-defective clique (k is a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2021-03, Vol.127, p.105131, Article 105131
Hauptverfasser: Chen, Xiaoyu, Zhou, Yi, Hao, Jin-Kao, Xiao, Mingyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 105131
container_title Computers & operations research
container_volume 127
creator Chen, Xiaoyu
Zhou, Yi
Hao, Jin-Kao
Xiao, Mingyu
description •Properties of the maximum k-defective clique problem.•A novel branch-and-bound based exact algorithm.•Graph preprocessing, two-hop reduction and color-bound techniques for improving the performance of branch-and-bound.•Numerical results on a wide range of real graphs. A k-defective clique (k is a non-negative integer) of an undirected graph G is a subset of its vertices, which induces a nearly complete graph with a maximum of k missing edges. The maximum k-defective clique problem (MDCP) is to determine the k-defective clique of the maximum size in the graph. As a relaxation of the popular maximum clique problem, the MDCP is a relevant model for a number of practical applications such as complex network analysis. However, it is computationally challenging to solve the problem. In this study, we investigate a set of general and dedicated graph reduction and pruning techniques to improve exact search algorithms based on the branch-and-bound framework. We present results of extensive computational experiments on 141 benchmark graphs from several popular sources, including both random graphs and massive real-world networks. Comparisons with two state-of-the-art methods in the literature demonstrate that our approach is on par with the reference methods and performs remarkably well on massive graphs.
doi_str_mv 10.1016/j.cor.2020.105131
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03586817v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054820302483</els_id><sourcerecordid>2505721470</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-35cdfd8454555c922ba947f1b7ab7afb9577f9c26c8b4da0840139ee0eeecb963</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK4-gLeCJw-tSdM0DZ6WRV1hwYuCt5Cm093UbVOTdtG3N6Xi0TAQZub_h5kPoWuCE4JJftck2rokxemUM0LJCVqQgtOY5-z9FC0wxSzGLCvO0YX3DQ6Pp2SB-Nq2_TiYbhe16su0Yxt9xBXUoAdzhEgfzOcIPjJdaHs_lXZO9Xt_ic5qdfBw9fsv0dvjw-t6E29fnp7Xq22sqSBDTJmu6qrIWMYY0yJNSyUyXpOSqxB1KRjntdBprosyqxQuMkyoAMAAoEuR0yW6nefu1UH2zrTKfUurjNystnKqYcqKvCD8SIL2Ztb2zk5bD7Kxo-vCejJlmIV7M46Diswq7az3Duq_sQTLiaVsZGApJ5ZyZhk897MHwqlHA056baDTUBkXSMnKmn_cP-XNes0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2505721470</pqid></control><display><type>article</type><title>Computing maximum k-defective cliques in massive graphs</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Chen, Xiaoyu ; Zhou, Yi ; Hao, Jin-Kao ; Xiao, Mingyu</creator><creatorcontrib>Chen, Xiaoyu ; Zhou, Yi ; Hao, Jin-Kao ; Xiao, Mingyu</creatorcontrib><description>•Properties of the maximum k-defective clique problem.•A novel branch-and-bound based exact algorithm.•Graph preprocessing, two-hop reduction and color-bound techniques for improving the performance of branch-and-bound.•Numerical results on a wide range of real graphs. A k-defective clique (k is a non-negative integer) of an undirected graph G is a subset of its vertices, which induces a nearly complete graph with a maximum of k missing edges. The maximum k-defective clique problem (MDCP) is to determine the k-defective clique of the maximum size in the graph. As a relaxation of the popular maximum clique problem, the MDCP is a relevant model for a number of practical applications such as complex network analysis. However, it is computationally challenging to solve the problem. In this study, we investigate a set of general and dedicated graph reduction and pruning techniques to improve exact search algorithms based on the branch-and-bound framework. We present results of extensive computational experiments on 141 benchmark graphs from several popular sources, including both random graphs and massive real-world networks. Comparisons with two state-of-the-art methods in the literature demonstrate that our approach is on par with the reference methods and performs remarkably well on massive graphs.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2020.105131</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Apexes ; Branch-and-bound ; Computer Science ; Exact search ; Graph reduction ; Graph theory ; Graphs ; Massive graphs ; Network analysis ; Operations research ; Relaxed clique ; Search algorithms</subject><ispartof>Computers &amp; operations research, 2021-03, Vol.127, p.105131, Article 105131</ispartof><rights>2020 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Mar 2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-35cdfd8454555c922ba947f1b7ab7afb9577f9c26c8b4da0840139ee0eeecb963</citedby><cites>FETCH-LOGICAL-c391t-35cdfd8454555c922ba947f1b7ab7afb9577f9c26c8b4da0840139ee0eeecb963</cites><orcidid>0000-0001-8813-4377 ; 0000-0002-1012-2373</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2020.105131$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03586817$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Hao, Jin-Kao</creatorcontrib><creatorcontrib>Xiao, Mingyu</creatorcontrib><title>Computing maximum k-defective cliques in massive graphs</title><title>Computers &amp; operations research</title><description>•Properties of the maximum k-defective clique problem.•A novel branch-and-bound based exact algorithm.•Graph preprocessing, two-hop reduction and color-bound techniques for improving the performance of branch-and-bound.•Numerical results on a wide range of real graphs. A k-defective clique (k is a non-negative integer) of an undirected graph G is a subset of its vertices, which induces a nearly complete graph with a maximum of k missing edges. The maximum k-defective clique problem (MDCP) is to determine the k-defective clique of the maximum size in the graph. As a relaxation of the popular maximum clique problem, the MDCP is a relevant model for a number of practical applications such as complex network analysis. However, it is computationally challenging to solve the problem. In this study, we investigate a set of general and dedicated graph reduction and pruning techniques to improve exact search algorithms based on the branch-and-bound framework. We present results of extensive computational experiments on 141 benchmark graphs from several popular sources, including both random graphs and massive real-world networks. Comparisons with two state-of-the-art methods in the literature demonstrate that our approach is on par with the reference methods and performs remarkably well on massive graphs.</description><subject>Apexes</subject><subject>Branch-and-bound</subject><subject>Computer Science</subject><subject>Exact search</subject><subject>Graph reduction</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Massive graphs</subject><subject>Network analysis</subject><subject>Operations research</subject><subject>Relaxed clique</subject><subject>Search algorithms</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK4-gLeCJw-tSdM0DZ6WRV1hwYuCt5Cm093UbVOTdtG3N6Xi0TAQZub_h5kPoWuCE4JJftck2rokxemUM0LJCVqQgtOY5-z9FC0wxSzGLCvO0YX3DQ6Pp2SB-Nq2_TiYbhe16su0Yxt9xBXUoAdzhEgfzOcIPjJdaHs_lXZO9Xt_ic5qdfBw9fsv0dvjw-t6E29fnp7Xq22sqSBDTJmu6qrIWMYY0yJNSyUyXpOSqxB1KRjntdBprosyqxQuMkyoAMAAoEuR0yW6nefu1UH2zrTKfUurjNystnKqYcqKvCD8SIL2Ztb2zk5bD7Kxo-vCejJlmIV7M46Diswq7az3Duq_sQTLiaVsZGApJ5ZyZhk897MHwqlHA056baDTUBkXSMnKmn_cP-XNes0</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Chen, Xiaoyu</creator><creator>Zhou, Yi</creator><creator>Hao, Jin-Kao</creator><creator>Xiao, Mingyu</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8813-4377</orcidid><orcidid>https://orcid.org/0000-0002-1012-2373</orcidid></search><sort><creationdate>20210301</creationdate><title>Computing maximum k-defective cliques in massive graphs</title><author>Chen, Xiaoyu ; Zhou, Yi ; Hao, Jin-Kao ; Xiao, Mingyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-35cdfd8454555c922ba947f1b7ab7afb9577f9c26c8b4da0840139ee0eeecb963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Apexes</topic><topic>Branch-and-bound</topic><topic>Computer Science</topic><topic>Exact search</topic><topic>Graph reduction</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Massive graphs</topic><topic>Network analysis</topic><topic>Operations research</topic><topic>Relaxed clique</topic><topic>Search algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Xiaoyu</creatorcontrib><creatorcontrib>Zhou, Yi</creatorcontrib><creatorcontrib>Hao, Jin-Kao</creatorcontrib><creatorcontrib>Xiao, Mingyu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Xiaoyu</au><au>Zhou, Yi</au><au>Hao, Jin-Kao</au><au>Xiao, Mingyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computing maximum k-defective cliques in massive graphs</atitle><jtitle>Computers &amp; operations research</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>127</volume><spage>105131</spage><pages>105131-</pages><artnum>105131</artnum><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><abstract>•Properties of the maximum k-defective clique problem.•A novel branch-and-bound based exact algorithm.•Graph preprocessing, two-hop reduction and color-bound techniques for improving the performance of branch-and-bound.•Numerical results on a wide range of real graphs. A k-defective clique (k is a non-negative integer) of an undirected graph G is a subset of its vertices, which induces a nearly complete graph with a maximum of k missing edges. The maximum k-defective clique problem (MDCP) is to determine the k-defective clique of the maximum size in the graph. As a relaxation of the popular maximum clique problem, the MDCP is a relevant model for a number of practical applications such as complex network analysis. However, it is computationally challenging to solve the problem. In this study, we investigate a set of general and dedicated graph reduction and pruning techniques to improve exact search algorithms based on the branch-and-bound framework. We present results of extensive computational experiments on 141 benchmark graphs from several popular sources, including both random graphs and massive real-world networks. Comparisons with two state-of-the-art methods in the literature demonstrate that our approach is on par with the reference methods and performs remarkably well on massive graphs.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2020.105131</doi><orcidid>https://orcid.org/0000-0001-8813-4377</orcidid><orcidid>https://orcid.org/0000-0002-1012-2373</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2021-03, Vol.127, p.105131, Article 105131
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_hal_primary_oai_HAL_hal_03586817v1
source ScienceDirect Journals (5 years ago - present)
subjects Apexes
Branch-and-bound
Computer Science
Exact search
Graph reduction
Graph theory
Graphs
Massive graphs
Network analysis
Operations research
Relaxed clique
Search algorithms
title Computing maximum k-defective cliques in massive graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A32%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computing%20maximum%20k-defective%20cliques%20in%20massive%20graphs&rft.jtitle=Computers%20&%20operations%20research&rft.au=Chen,%20Xiaoyu&rft.date=2021-03-01&rft.volume=127&rft.spage=105131&rft.pages=105131-&rft.artnum=105131&rft.issn=0305-0548&rft.eissn=1873-765X&rft_id=info:doi/10.1016/j.cor.2020.105131&rft_dat=%3Cproquest_hal_p%3E2505721470%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2505721470&rft_id=info:pmid/&rft_els_id=S0305054820302483&rfr_iscdi=true