Turbulent pair dispersion as a continuous-time random walk
The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between trac...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2014-09, Vol.755, p.np-np, Article R4 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | np |
---|---|
container_issue | |
container_start_page | np |
container_title | Journal of fluid mechanics |
container_volume | 755 |
creator | Thalabard, Simon Krstulovic, Giorgio Bec, Jérémie |
description | The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers. |
doi_str_mv | 10.1017/jfm.2014.445 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03576848v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_445</cupid><sourcerecordid>1566852090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgCtbqzgcYcKPg1JyZXCbupKgVCm7qOmQmiabOzWRG8e1NaRERwVUgfPlPDj9Cp4BngIFfrW0zyzCQGSF0D02AMJFyRug-mmCcZSlAhg_RUQhrjCHHgk_Q9Wr05Vibdkh65XyiXeiND65rExUSlVRdO7h27MaQDq4xiVet7prkQ9Wvx-jAqjqYk905RU93t6v5Il0-3j_Mb5ZpRTkbUqotFiURICoCTJiSW6MJgdLmPNcFtbwiilXa6sJgqKgQpbHAhdaG51SLfIoutrkvqpa9d43yn7JTTi5ulnJzh_M4qCDFO0R7vrW9795GEwbZuFCZulatiTtIYCTLQfCM_k8pYwXNsMCRnv2i6270bVw6KhrzWJFvZl9uVeW7ELyx358FLDf9yNiP3PQjYz-Rz3ZcNaV3-tn8SP3rwRe3KZBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553196831</pqid></control><display><type>article</type><title>Turbulent pair dispersion as a continuous-time random walk</title><source>Cambridge Journals</source><creator>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</creator><creatorcontrib>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</creatorcontrib><description>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.445</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dispersion ; Dispersions ; Fluid flow ; Fluid mechanics ; Mathematical models ; Mechanics ; Physics ; Probability distribution ; Random walk ; Random walk theory ; Rapids ; Separation ; Tracers ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R4</ispartof><rights>2014 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</citedby><cites>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</cites><orcidid>0000-0002-3618-5743 ; 0000-0002-9934-6292 ; 0000-0003-2371-7242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014004455/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03576848$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thalabard, Simon</creatorcontrib><creatorcontrib>Krstulovic, Giorgio</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><title>Turbulent pair dispersion as a continuous-time random walk</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</description><subject>Dispersion</subject><subject>Dispersions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Rapids</subject><subject>Separation</subject><subject>Tracers</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ctKAzEUBuAgCtbqzgcYcKPg1JyZXCbupKgVCm7qOmQmiabOzWRG8e1NaRERwVUgfPlPDj9Cp4BngIFfrW0zyzCQGSF0D02AMJFyRug-mmCcZSlAhg_RUQhrjCHHgk_Q9Wr05Vibdkh65XyiXeiND65rExUSlVRdO7h27MaQDq4xiVet7prkQ9Wvx-jAqjqYk905RU93t6v5Il0-3j_Mb5ZpRTkbUqotFiURICoCTJiSW6MJgdLmPNcFtbwiilXa6sJgqKgQpbHAhdaG51SLfIoutrkvqpa9d43yn7JTTi5ulnJzh_M4qCDFO0R7vrW9795GEwbZuFCZulatiTtIYCTLQfCM_k8pYwXNsMCRnv2i6270bVw6KhrzWJFvZl9uVeW7ELyx358FLDf9yNiP3PQjYz-Rz3ZcNaV3-tn8SP3rwRe3KZBg</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Thalabard, Simon</creator><creator>Krstulovic, Giorgio</creator><creator>Bec, Jérémie</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3618-5743</orcidid><orcidid>https://orcid.org/0000-0002-9934-6292</orcidid><orcidid>https://orcid.org/0000-0003-2371-7242</orcidid></search><sort><creationdate>20140925</creationdate><title>Turbulent pair dispersion as a continuous-time random walk</title><author>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dispersion</topic><topic>Dispersions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Rapids</topic><topic>Separation</topic><topic>Tracers</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thalabard, Simon</creatorcontrib><creatorcontrib>Krstulovic, Giorgio</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thalabard, Simon</au><au>Krstulovic, Giorgio</au><au>Bec, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent pair dispersion as a continuous-time random walk</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-09-25</date><risdate>2014</risdate><volume>755</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R4</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.445</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3618-5743</orcidid><orcidid>https://orcid.org/0000-0002-9934-6292</orcidid><orcidid>https://orcid.org/0000-0003-2371-7242</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R4 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03576848v1 |
source | Cambridge Journals |
subjects | Dispersion Dispersions Fluid flow Fluid mechanics Mathematical models Mechanics Physics Probability distribution Random walk Random walk theory Rapids Separation Tracers Turbulence Turbulent flow |
title | Turbulent pair dispersion as a continuous-time random walk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20pair%20dispersion%20as%20a%20continuous-time%20random%20walk&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Thalabard,%20Simon&rft.date=2014-09-25&rft.volume=755&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R4&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.445&rft_dat=%3Cproquest_hal_p%3E1566852090%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553196831&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_445&rfr_iscdi=true |