Turbulent pair dispersion as a continuous-time random walk

The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between trac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2014-09, Vol.755, p.np-np, Article R4
Hauptverfasser: Thalabard, Simon, Krstulovic, Giorgio, Bec, Jérémie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue
container_start_page np
container_title Journal of fluid mechanics
container_volume 755
creator Thalabard, Simon
Krstulovic, Giorgio
Bec, Jérémie
description The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.
doi_str_mv 10.1017/jfm.2014.445
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03576848v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2014_445</cupid><sourcerecordid>1566852090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</originalsourceid><addsrcrecordid>eNqF0ctKAzEUBuAgCtbqzgcYcKPg1JyZXCbupKgVCm7qOmQmiabOzWRG8e1NaRERwVUgfPlPDj9Cp4BngIFfrW0zyzCQGSF0D02AMJFyRug-mmCcZSlAhg_RUQhrjCHHgk_Q9Wr05Vibdkh65XyiXeiND65rExUSlVRdO7h27MaQDq4xiVet7prkQ9Wvx-jAqjqYk905RU93t6v5Il0-3j_Mb5ZpRTkbUqotFiURICoCTJiSW6MJgdLmPNcFtbwiilXa6sJgqKgQpbHAhdaG51SLfIoutrkvqpa9d43yn7JTTi5ulnJzh_M4qCDFO0R7vrW9795GEwbZuFCZulatiTtIYCTLQfCM_k8pYwXNsMCRnv2i6270bVw6KhrzWJFvZl9uVeW7ELyx358FLDf9yNiP3PQjYz-Rz3ZcNaV3-tn8SP3rwRe3KZBg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1553196831</pqid></control><display><type>article</type><title>Turbulent pair dispersion as a continuous-time random walk</title><source>Cambridge Journals</source><creator>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</creator><creatorcontrib>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</creatorcontrib><description>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2014.445</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Dispersion ; Dispersions ; Fluid flow ; Fluid mechanics ; Mathematical models ; Mechanics ; Physics ; Probability distribution ; Random walk ; Random walk theory ; Rapids ; Separation ; Tracers ; Turbulence ; Turbulent flow</subject><ispartof>Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R4</ispartof><rights>2014 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</citedby><cites>FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</cites><orcidid>0000-0002-3618-5743 ; 0000-0002-9934-6292 ; 0000-0003-2371-7242</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112014004455/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,777,781,882,27905,27906,55609</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03576848$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Thalabard, Simon</creatorcontrib><creatorcontrib>Krstulovic, Giorgio</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><title>Turbulent pair dispersion as a continuous-time random walk</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</description><subject>Dispersion</subject><subject>Dispersions</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Probability distribution</subject><subject>Random walk</subject><subject>Random walk theory</subject><subject>Rapids</subject><subject>Separation</subject><subject>Tracers</subject><subject>Turbulence</subject><subject>Turbulent flow</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF0ctKAzEUBuAgCtbqzgcYcKPg1JyZXCbupKgVCm7qOmQmiabOzWRG8e1NaRERwVUgfPlPDj9Cp4BngIFfrW0zyzCQGSF0D02AMJFyRug-mmCcZSlAhg_RUQhrjCHHgk_Q9Wr05Vibdkh65XyiXeiND65rExUSlVRdO7h27MaQDq4xiVet7prkQ9Wvx-jAqjqYk905RU93t6v5Il0-3j_Mb5ZpRTkbUqotFiURICoCTJiSW6MJgdLmPNcFtbwiilXa6sJgqKgQpbHAhdaG51SLfIoutrkvqpa9d43yn7JTTi5ulnJzh_M4qCDFO0R7vrW9795GEwbZuFCZulatiTtIYCTLQfCM_k8pYwXNsMCRnv2i6270bVw6KhrzWJFvZl9uVeW7ELyx358FLDf9yNiP3PQjYz-Rz3ZcNaV3-tn8SP3rwRe3KZBg</recordid><startdate>20140925</startdate><enddate>20140925</enddate><creator>Thalabard, Simon</creator><creator>Krstulovic, Giorgio</creator><creator>Bec, Jérémie</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3618-5743</orcidid><orcidid>https://orcid.org/0000-0002-9934-6292</orcidid><orcidid>https://orcid.org/0000-0003-2371-7242</orcidid></search><sort><creationdate>20140925</creationdate><title>Turbulent pair dispersion as a continuous-time random walk</title><author>Thalabard, Simon ; Krstulovic, Giorgio ; Bec, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c576t-5df09b4919c4169eb7fed441bf373d85f7c4a6cdfd8e01c599bef179dde735d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Dispersion</topic><topic>Dispersions</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Probability distribution</topic><topic>Random walk</topic><topic>Random walk theory</topic><topic>Rapids</topic><topic>Separation</topic><topic>Tracers</topic><topic>Turbulence</topic><topic>Turbulent flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thalabard, Simon</creatorcontrib><creatorcontrib>Krstulovic, Giorgio</creatorcontrib><creatorcontrib>Bec, Jérémie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thalabard, Simon</au><au>Krstulovic, Giorgio</au><au>Bec, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Turbulent pair dispersion as a continuous-time random walk</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2014-09-25</date><risdate>2014</risdate><volume>755</volume><spage>np</spage><epage>np</epage><pages>np-np</pages><artnum>R4</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The phenomenology of turbulent relative dispersion is revisited. A heuristic scenario is proposed, in which pairs of tracers undergo a succession of independent ballistic separations during time intervals whose lengths fluctuate. This approach suggests that the logarithm of the distance between tracers self-averages and performs a continuous-time random walk. This leads to specific predictions for the probability distribution of separations, which differ from those obtained using scale-dependent eddy-diffusivity models (e.g. in the framework of Richardson’s approach). These predictions are tested against high-resolution simulations and shed new light on the explosive separation between tracers.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2014.445</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3618-5743</orcidid><orcidid>https://orcid.org/0000-0002-9934-6292</orcidid><orcidid>https://orcid.org/0000-0003-2371-7242</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2014-09, Vol.755, p.np-np, Article R4
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_03576848v1
source Cambridge Journals
subjects Dispersion
Dispersions
Fluid flow
Fluid mechanics
Mathematical models
Mechanics
Physics
Probability distribution
Random walk
Random walk theory
Rapids
Separation
Tracers
Turbulence
Turbulent flow
title Turbulent pair dispersion as a continuous-time random walk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T01%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Turbulent%20pair%20dispersion%20as%20a%20continuous-time%20random%20walk&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Thalabard,%20Simon&rft.date=2014-09-25&rft.volume=755&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.artnum=R4&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2014.445&rft_dat=%3Cproquest_hal_p%3E1566852090%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1553196831&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2014_445&rfr_iscdi=true