Tunable electromagnetic resonant shunt using pulse-width modulation
This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and the electrical frequency is shown to be proportional to the command parameter...
Gespeichert in:
Veröffentlicht in: | Journal of sound and vibration 2021-05, Vol.500, p.116018, Article 116018 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 116018 |
container_title | Journal of sound and vibration |
container_volume | 500 |
creator | Auleley, Michel Giraud-Audine, Christophe Mahé, Hervé Thomas, Olivier |
description | This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and the electrical frequency is shown to be proportional to the command parameter of the PWM, the duty cycle. An easy and efficient strategy to tune the resonant shunt in real time is then proposed, thus obtaining a low powered and always stable vibration control device. The article proposes the theory of PWM, giving a robust method to predict the dynamics of the system. Then, an accurate multi-mode theoretical model of the tunable resonant shunt coupled to an elastic structure is proposed and experimentally validated on an elastic multi-mode structure, in the case of two different control strategies. The first one is a standard resonant shunt with both the electrical frequency and damping optimized to reduce a given resonance peak. The second one is based on a resonant shunt with the electrical damping as low as possible, which creates an antiresonance and a “notch” type mechanical response at the driving frequency. Both strategies are experimentally validated with real time variation and adaptation of the electrical frequency, obtaining an efficient vibration control device, able to reduce by a factor 40 the vibration level. |
doi_str_mv | 10.1016/j.jsv.2021.116018 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03576757v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X21000900</els_id><sourcerecordid>S0022460X21000900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-a206d3f73e0100d74e75b37dbcb6d88c1192a99e68696aaebe299032e2b8a0753</originalsourceid><addsrcrecordid>eNp9kFFLwzAQx4MoOKcfwLe--tB6Sdqkwacx1AkDXyb4FtLktqV07Ujaid_ejoqPvtzB3f93cD9C7ilkFKh4rLM6njIGjGaUCqDlBZlRUEVaFqK8JDMAxtJcwOc1uYmxBgCV83xGlpuhNVWDCTZo-9AdzK7F3tskYOxa0_ZJ3A9jHaJvd8lxaCKmX971--TQuaExve_aW3K1NePi7rfPycfL82a5Stfvr2_LxTq1XOZ9ahgIx7eSI1AAJ3OURcWlq2wlXFlaShUzSqEohRLGYIVMKeAMWVUakAWfk4fp7t40-hj8wYRv3RmvV4u1Ps-AF1LIQp7omKVT1oYuxoDbP4CCPhvTtR6N6bMxPRkbmaeJwfGJk8ego_XYWnQ-jHK06_w_9A9QmnPY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tunable electromagnetic resonant shunt using pulse-width modulation</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Auleley, Michel ; Giraud-Audine, Christophe ; Mahé, Hervé ; Thomas, Olivier</creator><creatorcontrib>Auleley, Michel ; Giraud-Audine, Christophe ; Mahé, Hervé ; Thomas, Olivier</creatorcontrib><description>This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and the electrical frequency is shown to be proportional to the command parameter of the PWM, the duty cycle. An easy and efficient strategy to tune the resonant shunt in real time is then proposed, thus obtaining a low powered and always stable vibration control device. The article proposes the theory of PWM, giving a robust method to predict the dynamics of the system. Then, an accurate multi-mode theoretical model of the tunable resonant shunt coupled to an elastic structure is proposed and experimentally validated on an elastic multi-mode structure, in the case of two different control strategies. The first one is a standard resonant shunt with both the electrical frequency and damping optimized to reduce a given resonance peak. The second one is based on a resonant shunt with the electrical damping as low as possible, which creates an antiresonance and a “notch” type mechanical response at the driving frequency. Both strategies are experimentally validated with real time variation and adaptation of the electrical frequency, obtaining an efficient vibration control device, able to reduce by a factor 40 the vibration level.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2021.116018</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptive shunt ; Analog electronics ; Electro-magnetic transduction ; Electronics ; Engineering Sciences ; Mechanics ; Pulse-width modulation ; Resonant shunt ; Tunable shunt</subject><ispartof>Journal of sound and vibration, 2021-05, Vol.500, p.116018, Article 116018</ispartof><rights>2021</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-a206d3f73e0100d74e75b37dbcb6d88c1192a99e68696aaebe299032e2b8a0753</citedby><cites>FETCH-LOGICAL-c374t-a206d3f73e0100d74e75b37dbcb6d88c1192a99e68696aaebe299032e2b8a0753</cites><orcidid>0000-0001-7240-5259</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jsv.2021.116018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03576757$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Auleley, Michel</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Mahé, Hervé</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><title>Tunable electromagnetic resonant shunt using pulse-width modulation</title><title>Journal of sound and vibration</title><description>This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and the electrical frequency is shown to be proportional to the command parameter of the PWM, the duty cycle. An easy and efficient strategy to tune the resonant shunt in real time is then proposed, thus obtaining a low powered and always stable vibration control device. The article proposes the theory of PWM, giving a robust method to predict the dynamics of the system. Then, an accurate multi-mode theoretical model of the tunable resonant shunt coupled to an elastic structure is proposed and experimentally validated on an elastic multi-mode structure, in the case of two different control strategies. The first one is a standard resonant shunt with both the electrical frequency and damping optimized to reduce a given resonance peak. The second one is based on a resonant shunt with the electrical damping as low as possible, which creates an antiresonance and a “notch” type mechanical response at the driving frequency. Both strategies are experimentally validated with real time variation and adaptation of the electrical frequency, obtaining an efficient vibration control device, able to reduce by a factor 40 the vibration level.</description><subject>Adaptive shunt</subject><subject>Analog electronics</subject><subject>Electro-magnetic transduction</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Mechanics</subject><subject>Pulse-width modulation</subject><subject>Resonant shunt</subject><subject>Tunable shunt</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAQx4MoOKcfwLe--tB6Sdqkwacx1AkDXyb4FtLktqV07Ujaid_ejoqPvtzB3f93cD9C7ilkFKh4rLM6njIGjGaUCqDlBZlRUEVaFqK8JDMAxtJcwOc1uYmxBgCV83xGlpuhNVWDCTZo-9AdzK7F3tskYOxa0_ZJ3A9jHaJvd8lxaCKmX971--TQuaExve_aW3K1NePi7rfPycfL82a5Stfvr2_LxTq1XOZ9ahgIx7eSI1AAJ3OURcWlq2wlXFlaShUzSqEohRLGYIVMKeAMWVUakAWfk4fp7t40-hj8wYRv3RmvV4u1Ps-AF1LIQp7omKVT1oYuxoDbP4CCPhvTtR6N6bMxPRkbmaeJwfGJk8ego_XYWnQ-jHK06_w_9A9QmnPY</recordid><startdate>20210526</startdate><enddate>20210526</enddate><creator>Auleley, Michel</creator><creator>Giraud-Audine, Christophe</creator><creator>Mahé, Hervé</creator><creator>Thomas, Olivier</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid></search><sort><creationdate>20210526</creationdate><title>Tunable electromagnetic resonant shunt using pulse-width modulation</title><author>Auleley, Michel ; Giraud-Audine, Christophe ; Mahé, Hervé ; Thomas, Olivier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-a206d3f73e0100d74e75b37dbcb6d88c1192a99e68696aaebe299032e2b8a0753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adaptive shunt</topic><topic>Analog electronics</topic><topic>Electro-magnetic transduction</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Mechanics</topic><topic>Pulse-width modulation</topic><topic>Resonant shunt</topic><topic>Tunable shunt</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Auleley, Michel</creatorcontrib><creatorcontrib>Giraud-Audine, Christophe</creatorcontrib><creatorcontrib>Mahé, Hervé</creatorcontrib><creatorcontrib>Thomas, Olivier</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Auleley, Michel</au><au>Giraud-Audine, Christophe</au><au>Mahé, Hervé</au><au>Thomas, Olivier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tunable electromagnetic resonant shunt using pulse-width modulation</atitle><jtitle>Journal of sound and vibration</jtitle><date>2021-05-26</date><risdate>2021</risdate><volume>500</volume><spage>116018</spage><pages>116018-</pages><artnum>116018</artnum><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>This article proposes a novel mean for tuning the natural frequency of an electromagnetic resonant shunt, using a pulse-width modulation (PWM) circuit. It is used to modulate the value of the capacitance of the shunt, and the electrical frequency is shown to be proportional to the command parameter of the PWM, the duty cycle. An easy and efficient strategy to tune the resonant shunt in real time is then proposed, thus obtaining a low powered and always stable vibration control device. The article proposes the theory of PWM, giving a robust method to predict the dynamics of the system. Then, an accurate multi-mode theoretical model of the tunable resonant shunt coupled to an elastic structure is proposed and experimentally validated on an elastic multi-mode structure, in the case of two different control strategies. The first one is a standard resonant shunt with both the electrical frequency and damping optimized to reduce a given resonance peak. The second one is based on a resonant shunt with the electrical damping as low as possible, which creates an antiresonance and a “notch” type mechanical response at the driving frequency. Both strategies are experimentally validated with real time variation and adaptation of the electrical frequency, obtaining an efficient vibration control device, able to reduce by a factor 40 the vibration level.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2021.116018</doi><orcidid>https://orcid.org/0000-0001-7240-5259</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-460X |
ispartof | Journal of sound and vibration, 2021-05, Vol.500, p.116018, Article 116018 |
issn | 0022-460X 1095-8568 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03576757v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Adaptive shunt Analog electronics Electro-magnetic transduction Electronics Engineering Sciences Mechanics Pulse-width modulation Resonant shunt Tunable shunt |
title | Tunable electromagnetic resonant shunt using pulse-width modulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A24%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tunable%20electromagnetic%20resonant%20shunt%20using%20pulse-width%20modulation&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Auleley,%20Michel&rft.date=2021-05-26&rft.volume=500&rft.spage=116018&rft.pages=116018-&rft.artnum=116018&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2021.116018&rft_dat=%3Celsevier_hal_p%3ES0022460X21000900%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0022460X21000900&rfr_iscdi=true |