Steady circular hydraulic jump on a rotating disk
The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2021-11, Vol.927, Article A24 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 927 |
creator | Ipatova, Anna Smirnov, K.V. Mogilevskiy, E.I. |
description | The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters. |
doi_str_mv | 10.1017/jfm.2021.751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03575232v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2021_751</cupid><sourcerecordid>2576820077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-fe69ea13f52ae4d03e8cc22476d32f390dd94b268f0b4a3bf1fc4c21c92850ca3</originalsourceid><addsrcrecordid>eNptkE1Lw0AQQBdRsFZv_oCAJ8HEmdkkmxxLsVYoeFDPy2Y_2sSkqZtE6L83pUUvngaGN4_hMXaLECGgeKxcExEQRiLBMzbBOM1DkcbJOZsAEIWIBJfsqusqAOSQiwnDt94qsw906fVQKx9s9saroS51UA3NLmi3gQp826u-3K4DU3af1-zCqbqzN6c5ZR-Lp_f5Mly9Pr_MZ6tQc572obNpbhVyl5CysQFuM62JYpEaTo7nYEweF5RmDopY8cKh07Em1DllCWjFp-z-6N2oWu582Si_l60q5XK2kocd8EQkxOkbR_buyO58-zXYrpdVO_jt-J6kRKQZAQgxUg9HSvu267x1v1oEeQgox4DyEFCOAUc8OuGqKXxp1vbP-u_BD5BvcKk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2576820077</pqid></control><display><type>article</type><title>Steady circular hydraulic jump on a rotating disk</title><source>Cambridge University Press Journals Complete</source><creator>Ipatova, Anna ; Smirnov, K.V. ; Mogilevskiy, E.I.</creator><creatorcontrib>Ipatova, Anna ; Smirnov, K.V. ; Mogilevskiy, E.I.</creatorcontrib><description>The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2021.751</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Angular velocity ; Axes of rotation ; Boundary conditions ; Centrifugal force ; Coriolis force ; Differential equations ; Engineering Sciences ; Experiments ; Flow structures ; Gravity ; Hydraulic jump ; Hydraulics ; Inertia ; JFM Papers ; Laboratories ; Ordinary differential equations ; Rotating disks ; Rotating liquids ; Rotation ; Shallow water ; Surface tension ; Thin films ; Velocity ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2021-11, Vol.927, Article A24</ispartof><rights>The Author(s), 2021. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-fe69ea13f52ae4d03e8cc22476d32f390dd94b268f0b4a3bf1fc4c21c92850ca3</citedby><cites>FETCH-LOGICAL-c336t-fe69ea13f52ae4d03e8cc22476d32f390dd94b268f0b4a3bf1fc4c21c92850ca3</cites><orcidid>0000-0002-9232-4066 ; 0000-0003-1987-4640 ; 0000-0002-0609-5659</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112021007515/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,315,781,785,886,27926,27927,55630</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03575232$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ipatova, Anna</creatorcontrib><creatorcontrib>Smirnov, K.V.</creatorcontrib><creatorcontrib>Mogilevskiy, E.I.</creatorcontrib><title>Steady circular hydraulic jump on a rotating disk</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.</description><subject>Angular velocity</subject><subject>Axes of rotation</subject><subject>Boundary conditions</subject><subject>Centrifugal force</subject><subject>Coriolis force</subject><subject>Differential equations</subject><subject>Engineering Sciences</subject><subject>Experiments</subject><subject>Flow structures</subject><subject>Gravity</subject><subject>Hydraulic jump</subject><subject>Hydraulics</subject><subject>Inertia</subject><subject>JFM Papers</subject><subject>Laboratories</subject><subject>Ordinary differential equations</subject><subject>Rotating disks</subject><subject>Rotating liquids</subject><subject>Rotation</subject><subject>Shallow water</subject><subject>Surface tension</subject><subject>Thin films</subject><subject>Velocity</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1Lw0AQQBdRsFZv_oCAJ8HEmdkkmxxLsVYoeFDPy2Y_2sSkqZtE6L83pUUvngaGN4_hMXaLECGgeKxcExEQRiLBMzbBOM1DkcbJOZsAEIWIBJfsqusqAOSQiwnDt94qsw906fVQKx9s9saroS51UA3NLmi3gQp826u-3K4DU3af1-zCqbqzN6c5ZR-Lp_f5Mly9Pr_MZ6tQc572obNpbhVyl5CysQFuM62JYpEaTo7nYEweF5RmDopY8cKh07Em1DllCWjFp-z-6N2oWu582Si_l60q5XK2kocd8EQkxOkbR_buyO58-zXYrpdVO_jt-J6kRKQZAQgxUg9HSvu267x1v1oEeQgox4DyEFCOAUc8OuGqKXxp1vbP-u_BD5BvcKk</recordid><startdate>20211125</startdate><enddate>20211125</enddate><creator>Ipatova, Anna</creator><creator>Smirnov, K.V.</creator><creator>Mogilevskiy, E.I.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9232-4066</orcidid><orcidid>https://orcid.org/0000-0003-1987-4640</orcidid><orcidid>https://orcid.org/0000-0002-0609-5659</orcidid></search><sort><creationdate>20211125</creationdate><title>Steady circular hydraulic jump on a rotating disk</title><author>Ipatova, Anna ; Smirnov, K.V. ; Mogilevskiy, E.I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-fe69ea13f52ae4d03e8cc22476d32f390dd94b268f0b4a3bf1fc4c21c92850ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Axes of rotation</topic><topic>Boundary conditions</topic><topic>Centrifugal force</topic><topic>Coriolis force</topic><topic>Differential equations</topic><topic>Engineering Sciences</topic><topic>Experiments</topic><topic>Flow structures</topic><topic>Gravity</topic><topic>Hydraulic jump</topic><topic>Hydraulics</topic><topic>Inertia</topic><topic>JFM Papers</topic><topic>Laboratories</topic><topic>Ordinary differential equations</topic><topic>Rotating disks</topic><topic>Rotating liquids</topic><topic>Rotation</topic><topic>Shallow water</topic><topic>Surface tension</topic><topic>Thin films</topic><topic>Velocity</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ipatova, Anna</creatorcontrib><creatorcontrib>Smirnov, K.V.</creatorcontrib><creatorcontrib>Mogilevskiy, E.I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ipatova, Anna</au><au>Smirnov, K.V.</au><au>Mogilevskiy, E.I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steady circular hydraulic jump on a rotating disk</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2021-11-25</date><risdate>2021</risdate><volume>927</volume><artnum>A24</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>The paper deals with the steady axially symmetric flow of a viscous liquid layer over a rotating disk. The liquid is fed near the axis of rotation and spreads due to inertia and the centrifugal force. The viscous shallow-water approach gives a system of ordinary differential equations governing the flow. We consider inertia, gravity, centrifugal and Coriolis forces and estimate the effect of surface tension. We found four qualitatively different flow regimes. Transition through these regimes shows the continuous evolution of the flow structure from a hydraulic jump on a static disk to a monotonic thickness decrease on a fast rotating one. We show that, in the absence of surface tension, the intensity of the jump gradually vanishes at a finite distance from the axis of rotation while the angular velocity increases. The surface tension decreases the jump radius and destroys the steady solution for a certain range of parameters.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2021.751</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0002-9232-4066</orcidid><orcidid>https://orcid.org/0000-0003-1987-4640</orcidid><orcidid>https://orcid.org/0000-0002-0609-5659</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2021-11, Vol.927, Article A24 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03575232v1 |
source | Cambridge University Press Journals Complete |
subjects | Angular velocity Axes of rotation Boundary conditions Centrifugal force Coriolis force Differential equations Engineering Sciences Experiments Flow structures Gravity Hydraulic jump Hydraulics Inertia JFM Papers Laboratories Ordinary differential equations Rotating disks Rotating liquids Rotation Shallow water Surface tension Thin films Velocity Viscosity |
title | Steady circular hydraulic jump on a rotating disk |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A54%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steady%20circular%20hydraulic%20jump%20on%20a%20rotating%20disk&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Ipatova,%20Anna&rft.date=2021-11-25&rft.volume=927&rft.artnum=A24&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2021.751&rft_dat=%3Cproquest_hal_p%3E2576820077%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2576820077&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2021_751&rfr_iscdi=true |