Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution
The formation of Fe-ZrO2 nanocomposite powders by reduction in hydrogen of a nanocrystalline totally stabilized Zr0.9Fe0.1O1.95 solid solution was investigated by X-ray diffraction (XRD), field-emission-gun scanning electron microscopy (FEG-SEM) and Mossbauer spectroscopy. The reduction of the stabi...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2009-03, Vol.471 (1-2), p.204-210 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 1-2 |
container_start_page | 204 |
container_title | Journal of alloys and compounds |
container_volume | 471 |
creator | DE RESENDE, V. G GARCIA, F. L PEIGNEY, A DE GRAVE, E LAURENT, Ch |
description | The formation of Fe-ZrO2 nanocomposite powders by reduction in hydrogen of a nanocrystalline totally stabilized Zr0.9Fe0.1O1.95 solid solution was investigated by X-ray diffraction (XRD), field-emission-gun scanning electron microscopy (FEG-SEM) and Mossbauer spectroscopy. The reduction of the stabilized Zr0.9Fe0.1O1.95 solid solution and the formation of metallic particles precedes the transformation of zirconia into the monoclinic phase, which becomes the major zirconia phase upon reduction at 950 deg C. alpha-Fe particles with a size distribution slightly increasing from 10-50 to 20-70 nm upon the increase in reduction temperature are observed and a second population of smaller ( < 5 nm) gamma-Fe nanoparticles is also noticed when the reduction is performed at 1000 deg C. Another metallic phase with a hyperfine field of 200 kOe at RT (250 kOe at 80 K) is detected, which could account for an Fe/Zr phase. It could be formed by the reduction on an Fe2+-rich transient phase incorporating a small fraction of the Zr4+ ions, formed by a phase partitioning process superimposed to the reduciton processes. |
doi_str_mv | 10.1016/j.jallcom.2008.03.045 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03572898v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>33934486</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3105-d5764073d3459d68ade19502bdfa38f97759b6e4831e65f23511ec9ef0f02fa83</originalsourceid><addsrcrecordid>eNo9kcFqGzEQhkVpoG7SRyjo0tJAdjvSrHalYwhNHDD40Pbii5B3JSIjr1xpneC3rxabXEYwfP83gp-QrwxqBqz9uat3JoQ-7msOIGvAGhrxgSyY7LBq2lZ9JAtQXFQSpfxEPue8AwCmkC1I-H0apxebfabR0UdbbdKa09GMsfgOMfvJ0kN8G2zKdHuiyQ7HfvJxpH6kSz5nzJlOpzyVX_jR0h-bdFdUt0WUY_DDPI9z6IZcOROy_XJ5r8nfx19_HpbVav30_HC_qnpkIKpBdG0DHQ7YCDW00gyWKQF8OziD0qmuE2rb2kYis61wHAVjtlfWgQPujMRrcnv2vpigD8nvTTrpaLxe3q_0vAMUHZdKvrLCfj-zhxT_HW2e9N7n3oZgRhuPWSMqbBrZFlCcwT7FnJN172YGeu5B7_SlBz33UI7o0kPJfbscMLk3wSUz9j6_hznDBruO43-ukImh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33934486</pqid></control><display><type>article</type><title>Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>DE RESENDE, V. G ; GARCIA, F. L ; PEIGNEY, A ; DE GRAVE, E ; LAURENT, Ch</creator><creatorcontrib>DE RESENDE, V. G ; GARCIA, F. L ; PEIGNEY, A ; DE GRAVE, E ; LAURENT, Ch</creatorcontrib><description>The formation of Fe-ZrO2 nanocomposite powders by reduction in hydrogen of a nanocrystalline totally stabilized Zr0.9Fe0.1O1.95 solid solution was investigated by X-ray diffraction (XRD), field-emission-gun scanning electron microscopy (FEG-SEM) and Mossbauer spectroscopy. The reduction of the stabilized Zr0.9Fe0.1O1.95 solid solution and the formation of metallic particles precedes the transformation of zirconia into the monoclinic phase, which becomes the major zirconia phase upon reduction at 950 deg C. alpha-Fe particles with a size distribution slightly increasing from 10-50 to 20-70 nm upon the increase in reduction temperature are observed and a second population of smaller ( < 5 nm) gamma-Fe nanoparticles is also noticed when the reduction is performed at 1000 deg C. Another metallic phase with a hyperfine field of 200 kOe at RT (250 kOe at 80 K) is detected, which could account for an Fe/Zr phase. It could be formed by the reduction on an Fe2+-rich transient phase incorporating a small fraction of the Zr4+ ions, formed by a phase partitioning process superimposed to the reduciton processes.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2008.03.045</identifier><language>eng</language><publisher>Kidlington: Elsevier</publisher><subject>Chemical Sciences ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Material chemistry ; Materials science ; Materials synthesis; materials processing ; Physics</subject><ispartof>Journal of alloys and compounds, 2009-03, Vol.471 (1-2), p.204-210</ispartof><rights>2009 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3105-d5764073d3459d68ade19502bdfa38f97759b6e4831e65f23511ec9ef0f02fa83</citedby><cites>FETCH-LOGICAL-c3105-d5764073d3459d68ade19502bdfa38f97759b6e4831e65f23511ec9ef0f02fa83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21343772$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03572898$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>DE RESENDE, V. G</creatorcontrib><creatorcontrib>GARCIA, F. L</creatorcontrib><creatorcontrib>PEIGNEY, A</creatorcontrib><creatorcontrib>DE GRAVE, E</creatorcontrib><creatorcontrib>LAURENT, Ch</creatorcontrib><title>Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution</title><title>Journal of alloys and compounds</title><description>The formation of Fe-ZrO2 nanocomposite powders by reduction in hydrogen of a nanocrystalline totally stabilized Zr0.9Fe0.1O1.95 solid solution was investigated by X-ray diffraction (XRD), field-emission-gun scanning electron microscopy (FEG-SEM) and Mossbauer spectroscopy. The reduction of the stabilized Zr0.9Fe0.1O1.95 solid solution and the formation of metallic particles precedes the transformation of zirconia into the monoclinic phase, which becomes the major zirconia phase upon reduction at 950 deg C. alpha-Fe particles with a size distribution slightly increasing from 10-50 to 20-70 nm upon the increase in reduction temperature are observed and a second population of smaller ( < 5 nm) gamma-Fe nanoparticles is also noticed when the reduction is performed at 1000 deg C. Another metallic phase with a hyperfine field of 200 kOe at RT (250 kOe at 80 K) is detected, which could account for an Fe/Zr phase. It could be formed by the reduction on an Fe2+-rich transient phase incorporating a small fraction of the Zr4+ ions, formed by a phase partitioning process superimposed to the reduciton processes.</description><subject>Chemical Sciences</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Material chemistry</subject><subject>Materials science</subject><subject>Materials synthesis; materials processing</subject><subject>Physics</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNo9kcFqGzEQhkVpoG7SRyjo0tJAdjvSrHalYwhNHDD40Pbii5B3JSIjr1xpneC3rxabXEYwfP83gp-QrwxqBqz9uat3JoQ-7msOIGvAGhrxgSyY7LBq2lZ9JAtQXFQSpfxEPue8AwCmkC1I-H0apxebfabR0UdbbdKa09GMsfgOMfvJ0kN8G2zKdHuiyQ7HfvJxpH6kSz5nzJlOpzyVX_jR0h-bdFdUt0WUY_DDPI9z6IZcOROy_XJ5r8nfx19_HpbVav30_HC_qnpkIKpBdG0DHQ7YCDW00gyWKQF8OziD0qmuE2rb2kYis61wHAVjtlfWgQPujMRrcnv2vpigD8nvTTrpaLxe3q_0vAMUHZdKvrLCfj-zhxT_HW2e9N7n3oZgRhuPWSMqbBrZFlCcwT7FnJN172YGeu5B7_SlBz33UI7o0kPJfbscMLk3wSUz9j6_hznDBruO43-ukImh</recordid><startdate>20090305</startdate><enddate>20090305</enddate><creator>DE RESENDE, V. G</creator><creator>GARCIA, F. L</creator><creator>PEIGNEY, A</creator><creator>DE GRAVE, E</creator><creator>LAURENT, Ch</creator><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20090305</creationdate><title>Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution</title><author>DE RESENDE, V. G ; GARCIA, F. L ; PEIGNEY, A ; DE GRAVE, E ; LAURENT, Ch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3105-d5764073d3459d68ade19502bdfa38f97759b6e4831e65f23511ec9ef0f02fa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemical Sciences</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Material chemistry</topic><topic>Materials science</topic><topic>Materials synthesis; materials processing</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DE RESENDE, V. G</creatorcontrib><creatorcontrib>GARCIA, F. L</creatorcontrib><creatorcontrib>PEIGNEY, A</creatorcontrib><creatorcontrib>DE GRAVE, E</creatorcontrib><creatorcontrib>LAURENT, Ch</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DE RESENDE, V. G</au><au>GARCIA, F. L</au><au>PEIGNEY, A</au><au>DE GRAVE, E</au><au>LAURENT, Ch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2009-03-05</date><risdate>2009</risdate><volume>471</volume><issue>1-2</issue><spage>204</spage><epage>210</epage><pages>204-210</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>The formation of Fe-ZrO2 nanocomposite powders by reduction in hydrogen of a nanocrystalline totally stabilized Zr0.9Fe0.1O1.95 solid solution was investigated by X-ray diffraction (XRD), field-emission-gun scanning electron microscopy (FEG-SEM) and Mossbauer spectroscopy. The reduction of the stabilized Zr0.9Fe0.1O1.95 solid solution and the formation of metallic particles precedes the transformation of zirconia into the monoclinic phase, which becomes the major zirconia phase upon reduction at 950 deg C. alpha-Fe particles with a size distribution slightly increasing from 10-50 to 20-70 nm upon the increase in reduction temperature are observed and a second population of smaller ( < 5 nm) gamma-Fe nanoparticles is also noticed when the reduction is performed at 1000 deg C. Another metallic phase with a hyperfine field of 200 kOe at RT (250 kOe at 80 K) is detected, which could account for an Fe/Zr phase. It could be formed by the reduction on an Fe2+-rich transient phase incorporating a small fraction of the Zr4+ ions, formed by a phase partitioning process superimposed to the reduciton processes.</abstract><cop>Kidlington</cop><pub>Elsevier</pub><doi>10.1016/j.jallcom.2008.03.045</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2009-03, Vol.471 (1-2), p.204-210 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03572898v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Chemical Sciences Cross-disciplinary physics: materials science rheology Exact sciences and technology Material chemistry Materials science Materials synthesis materials processing Physics |
title | Synthesis of Fe-ZrO2 nanocomposite powders by reduction in H2 of a nanocrystalline (Zr, Fe)O2 solid solution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A08%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20Fe-ZrO2%20nanocomposite%20powders%20by%20reduction%20in%20H2%20of%20a%20nanocrystalline%20(Zr,%20Fe)O2%20solid%20solution&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=DE%20RESENDE,%20V.%20G&rft.date=2009-03-05&rft.volume=471&rft.issue=1-2&rft.spage=204&rft.epage=210&rft.pages=204-210&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2008.03.045&rft_dat=%3Cproquest_hal_p%3E33934486%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=33934486&rft_id=info:pmid/&rfr_iscdi=true |