Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks

Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational intelligence 2022-06, Vol.38 (3), p.1183-1214
Hauptverfasser: Benmezal, Larbi, Benhamou, Belaid, Boughaci, Dalila
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1214
container_issue 3
container_start_page 1183
container_title Computational intelligence
container_volume 38
creator Benmezal, Larbi
Benhamou, Belaid
Boughaci, Dalila
description Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.
doi_str_mv 10.1111/coin.12454
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03568428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678683661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</originalsourceid><addsrcrecordid>eNp9kM1KLDEQhYMoOP5sfIKAK4XxJukknVnK4M_AcF2o6xDT1U40k4xJWnHnI_iMPsntvi0urUUVFF8dTh2Ejig5o339sdGFM8q44FtoQrmsp0pyso0mRDE-rWeV2EV7OT8RQmjF1QT5i9fou-JiMOkdLwokU6DBy2iNx7dgkl3hNRTz9fG5gi65XJzFbUy4rACbUCAEgzcxu0HChUe8SfHBwxq7gC1433mTcIDyFtNzPkA7rfEZDr_nPrq_vLibX0-XN1eL-flyatmM9zabVgoA2XLWCDKr-38s9L02BqRVIAWDmWCC1w9CKMtY04jGkFbIiteW0mofnYy6K-P1Jrl1_5uOxunr86UedqQSUnGmXgf2eGR74y8d5KKfYpdCb08zWSupKikH6nSkbIo5J2h_ZCnRQ_J6SF7_T76H6Qi_OQ_vv5B6frP4O978A0fDh3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678683661</pqid></control><display><type>article</type><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</creator><creatorcontrib>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</creatorcontrib><description>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12454</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Antenna Positioning Problem ; Antennas ; Artificial Intelligence ; Cellular communication ; Cellular radio ; Computer Science ; Evolution ; evolutionary meta‐heuristic ; Heuristic ; local search ; Mutation ; network design ; Networks ; optimization ; Search methods</subject><ispartof>Computational intelligence, 2022-06, Vol.38 (3), p.1183-1214</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</cites><orcidid>0000-0001-5210-8951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12454$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12454$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-03568428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benmezal, Larbi</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><title>Computational intelligence</title><description>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</description><subject>Antenna Positioning Problem</subject><subject>Antennas</subject><subject>Artificial Intelligence</subject><subject>Cellular communication</subject><subject>Cellular radio</subject><subject>Computer Science</subject><subject>Evolution</subject><subject>evolutionary meta‐heuristic</subject><subject>Heuristic</subject><subject>local search</subject><subject>Mutation</subject><subject>network design</subject><subject>Networks</subject><subject>optimization</subject><subject>Search methods</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KLDEQhYMoOP5sfIKAK4XxJukknVnK4M_AcF2o6xDT1U40k4xJWnHnI_iMPsntvi0urUUVFF8dTh2Ejig5o339sdGFM8q44FtoQrmsp0pyso0mRDE-rWeV2EV7OT8RQmjF1QT5i9fou-JiMOkdLwokU6DBy2iNx7dgkl3hNRTz9fG5gi65XJzFbUy4rACbUCAEgzcxu0HChUe8SfHBwxq7gC1433mTcIDyFtNzPkA7rfEZDr_nPrq_vLibX0-XN1eL-flyatmM9zabVgoA2XLWCDKr-38s9L02BqRVIAWDmWCC1w9CKMtY04jGkFbIiteW0mofnYy6K-P1Jrl1_5uOxunr86UedqQSUnGmXgf2eGR74y8d5KKfYpdCb08zWSupKikH6nSkbIo5J2h_ZCnRQ_J6SF7_T76H6Qi_OQ_vv5B6frP4O978A0fDh3g</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Benmezal, Larbi</creator><creator>Benhamou, Belaid</creator><creator>Boughaci, Dalila</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></search><sort><creationdate>202206</creationdate><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><author>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna Positioning Problem</topic><topic>Antennas</topic><topic>Artificial Intelligence</topic><topic>Cellular communication</topic><topic>Cellular radio</topic><topic>Computer Science</topic><topic>Evolution</topic><topic>evolutionary meta‐heuristic</topic><topic>Heuristic</topic><topic>local search</topic><topic>Mutation</topic><topic>network design</topic><topic>Networks</topic><topic>optimization</topic><topic>Search methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benmezal, Larbi</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benmezal, Larbi</au><au>Benhamou, Belaid</au><au>Boughaci, Dalila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</atitle><jtitle>Computational intelligence</jtitle><date>2022-06</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>1183</spage><epage>1214</epage><pages>1183-1214</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12454</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0824-7935
ispartof Computational intelligence, 2022-06, Vol.38 (3), p.1183-1214
issn 0824-7935
1467-8640
language eng
recordid cdi_hal_primary_oai_HAL_hal_03568428v1
source EBSCOhost Business Source Complete; Access via Wiley Online Library
subjects Antenna Positioning Problem
Antennas
Artificial Intelligence
Cellular communication
Cellular radio
Computer Science
Evolution
evolutionary meta‐heuristic
Heuristic
local search
Mutation
network design
Networks
optimization
Search methods
title Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Iterated%20Local%20Search%20meta%E2%80%90heuristic%20for%20the%20antenna%20positioning%20problem%20in%20cellular%20networks&rft.jtitle=Computational%20intelligence&rft.au=Benmezal,%20Larbi&rft.date=2022-06&rft.volume=38&rft.issue=3&rft.spage=1183&rft.epage=1214&rft.pages=1183-1214&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12454&rft_dat=%3Cproquest_hal_p%3E2678683661%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678683661&rft_id=info:pmid/&rfr_iscdi=true