Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks
Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minim...
Gespeichert in:
Veröffentlicht in: | Computational intelligence 2022-06, Vol.38 (3), p.1183-1214 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1214 |
---|---|
container_issue | 3 |
container_start_page | 1183 |
container_title | Computational intelligence |
container_volume | 38 |
creator | Benmezal, Larbi Benhamou, Belaid Boughaci, Dalila |
description | Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem. |
doi_str_mv | 10.1111/coin.12454 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03568428v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678683661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</originalsourceid><addsrcrecordid>eNp9kM1KLDEQhYMoOP5sfIKAK4XxJukknVnK4M_AcF2o6xDT1U40k4xJWnHnI_iMPsntvi0urUUVFF8dTh2Ejig5o339sdGFM8q44FtoQrmsp0pyso0mRDE-rWeV2EV7OT8RQmjF1QT5i9fou-JiMOkdLwokU6DBy2iNx7dgkl3hNRTz9fG5gi65XJzFbUy4rACbUCAEgzcxu0HChUe8SfHBwxq7gC1433mTcIDyFtNzPkA7rfEZDr_nPrq_vLibX0-XN1eL-flyatmM9zabVgoA2XLWCDKr-38s9L02BqRVIAWDmWCC1w9CKMtY04jGkFbIiteW0mofnYy6K-P1Jrl1_5uOxunr86UedqQSUnGmXgf2eGR74y8d5KKfYpdCb08zWSupKikH6nSkbIo5J2h_ZCnRQ_J6SF7_T76H6Qi_OQ_vv5B6frP4O978A0fDh3g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678683661</pqid></control><display><type>article</type><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><source>EBSCOhost Business Source Complete</source><source>Access via Wiley Online Library</source><creator>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</creator><creatorcontrib>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</creatorcontrib><description>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12454</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Antenna Positioning Problem ; Antennas ; Artificial Intelligence ; Cellular communication ; Cellular radio ; Computer Science ; Evolution ; evolutionary meta‐heuristic ; Heuristic ; local search ; Mutation ; network design ; Networks ; optimization ; Search methods</subject><ispartof>Computational intelligence, 2022-06, Vol.38 (3), p.1183-1214</ispartof><rights>2021 Wiley Periodicals LLC.</rights><rights>2022 Wiley Periodicals LLC.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</cites><orcidid>0000-0001-5210-8951</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcoin.12454$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcoin.12454$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-03568428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benmezal, Larbi</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><title>Computational intelligence</title><description>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</description><subject>Antenna Positioning Problem</subject><subject>Antennas</subject><subject>Artificial Intelligence</subject><subject>Cellular communication</subject><subject>Cellular radio</subject><subject>Computer Science</subject><subject>Evolution</subject><subject>evolutionary meta‐heuristic</subject><subject>Heuristic</subject><subject>local search</subject><subject>Mutation</subject><subject>network design</subject><subject>Networks</subject><subject>optimization</subject><subject>Search methods</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KLDEQhYMoOP5sfIKAK4XxJukknVnK4M_AcF2o6xDT1U40k4xJWnHnI_iMPsntvi0urUUVFF8dTh2Ejig5o339sdGFM8q44FtoQrmsp0pyso0mRDE-rWeV2EV7OT8RQmjF1QT5i9fou-JiMOkdLwokU6DBy2iNx7dgkl3hNRTz9fG5gi65XJzFbUy4rACbUCAEgzcxu0HChUe8SfHBwxq7gC1433mTcIDyFtNzPkA7rfEZDr_nPrq_vLibX0-XN1eL-flyatmM9zabVgoA2XLWCDKr-38s9L02BqRVIAWDmWCC1w9CKMtY04jGkFbIiteW0mofnYy6K-P1Jrl1_5uOxunr86UedqQSUnGmXgf2eGR74y8d5KKfYpdCb08zWSupKikH6nSkbIo5J2h_ZCnRQ_J6SF7_T76H6Qi_OQ_vv5B6frP4O978A0fDh3g</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Benmezal, Larbi</creator><creator>Benhamou, Belaid</creator><creator>Boughaci, Dalila</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></search><sort><creationdate>202206</creationdate><title>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</title><author>Benmezal, Larbi ; Benhamou, Belaid ; Boughaci, Dalila</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2944-7df65ee6f42d5097124ce7127aae6c8e652e952547b558c22dd5da0f56347c113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antenna Positioning Problem</topic><topic>Antennas</topic><topic>Artificial Intelligence</topic><topic>Cellular communication</topic><topic>Cellular radio</topic><topic>Computer Science</topic><topic>Evolution</topic><topic>evolutionary meta‐heuristic</topic><topic>Heuristic</topic><topic>local search</topic><topic>Mutation</topic><topic>network design</topic><topic>Networks</topic><topic>optimization</topic><topic>Search methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benmezal, Larbi</creatorcontrib><creatorcontrib>Benhamou, Belaid</creatorcontrib><creatorcontrib>Boughaci, Dalila</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benmezal, Larbi</au><au>Benhamou, Belaid</au><au>Boughaci, Dalila</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks</atitle><jtitle>Computational intelligence</jtitle><date>2022-06</date><risdate>2022</risdate><volume>38</volume><issue>3</issue><spage>1183</spage><epage>1214</epage><pages>1183-1214</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>Radio network planning is a core problem in cellular networks. It includes coverage, capacity and parameter planning. This paper investigates the Antenna Positioning Problem (APP) which is a main task in cellular networks planning. The aim is to find a trade‐off between maximizing coverage and minimizing costs. APP is the task of selecting a subset of potential locations where installing the base stations to cover the entire area. In theory, the APP is NP‐hard. To solve it in practice, we propose a new meta‐heuristic called Evolutionary Iterated Local Search that merges the local search method and some evolutionary operations of crossover and mutation. The proposed method is implemented and evaluated on realistic, synthetic and random instances of the problem of different sizes. The numerical results and the comparison with the state‐of‐the‐art show that the proposed method succeeds in finding good results for the considered problem.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/coin.12454</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5210-8951</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2022-06, Vol.38 (3), p.1183-1214 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03568428v1 |
source | EBSCOhost Business Source Complete; Access via Wiley Online Library |
subjects | Antenna Positioning Problem Antennas Artificial Intelligence Cellular communication Cellular radio Computer Science Evolution evolutionary meta‐heuristic Heuristic local search Mutation network design Networks optimization Search methods |
title | Evolutionary Iterated Local Search meta‐heuristic for the antenna positioning problem in cellular networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T19%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolutionary%20Iterated%20Local%20Search%20meta%E2%80%90heuristic%20for%20the%20antenna%20positioning%20problem%20in%20cellular%20networks&rft.jtitle=Computational%20intelligence&rft.au=Benmezal,%20Larbi&rft.date=2022-06&rft.volume=38&rft.issue=3&rft.spage=1183&rft.epage=1214&rft.pages=1183-1214&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12454&rft_dat=%3Cproquest_hal_p%3E2678683661%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678683661&rft_id=info:pmid/&rfr_iscdi=true |