Gyrofluid analysis of electron βe effects on collisionless reconnection

The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$. The finite $\beta _e$ effect implies a magnet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plasma physics 2022-02, Vol.88 (1), Article 905880111
Hauptverfasser: Granier, C., Borgogno, D., Grasso, D., Tassi, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of plasma physics
container_volume 88
creator Granier, C.
Borgogno, D.
Grasso, D.
Tassi, E.
description The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$. The finite $\beta _e$ effect implies a magnetic perturbation along the guide field direction, and electron finite Larmor radius effects. A Hamiltonian derivation of the model is presented. A new dispersion relation of the tearing instability is derived for the case $\beta _e=0$ and tested against numerical simulations. For $\beta _e \ll 1$ the equilibrium electron temperature is seen to enhance the linear growth rate, whereas we observe a stabilizing role when electron finite Larmor radius effects become more relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects. Energy transfers are analysed and the conservation laws associated with the Casimir invariants of the model are also discussed. Numerical simulations seem to indicate that finite $\beta _e$ effects do not produce qualitative modifications in the structures of the Lagrangian invariants associated with Casimirs of the model.
doi_str_mv 10.1017/S0022377822000010
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03562625v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022377822000010</cupid><sourcerecordid>2626170997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3570-23929669da2b1a3741e61f3be2d77a36a5385ab32210c72b84416617bed3a6943</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gysVo8jKTTJalaCsUXKjrkJlJNCWd1KQV-lt-iN9khhZdiG8T3r3nXshD6JKSG0qouH0iBIAJUQOQPJQcoREtuSxETcQxGg12Mfin6CylZUYYATFC89kuBuu3rsO6136XXMLBYuNNu4mhx1-fBhtr85b1HrfBe5dc6L1JCUfThr7PXhbO0YnVPpmLwztGL_d3z9N5sXicPUwni6JllSAFMAmSc9lpaKhmoqSGU8saA50QmnFdsbrSDQOgpBXQ1GVJOaeiMR3TXJZsjK73vW_aq3V0Kx13Kmin5pOFGjTCKg4cqg-a2as9u47hfWvSRi3DNuZvJpWJ3EqkFJmie6qNIaVo7E8tJWo4rvpz3Jxhh4xeNdF1r-a3-v_UN8Y2edI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626170997</pqid></control><display><type>article</type><title>Gyrofluid analysis of electron βe effects on collisionless reconnection</title><source>Cambridge University Press Journals Complete</source><creator>Granier, C. ; Borgogno, D. ; Grasso, D. ; Tassi, E.</creator><creatorcontrib>Granier, C. ; Borgogno, D. ; Grasso, D. ; Tassi, E.</creatorcontrib><description>The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$. The finite $\beta _e$ effect implies a magnetic perturbation along the guide field direction, and electron finite Larmor radius effects. A Hamiltonian derivation of the model is presented. A new dispersion relation of the tearing instability is derived for the case $\beta _e=0$ and tested against numerical simulations. For $\beta _e \ll 1$ the equilibrium electron temperature is seen to enhance the linear growth rate, whereas we observe a stabilizing role when electron finite Larmor radius effects become more relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects. Energy transfers are analysed and the conservation laws associated with the Casimir invariants of the model are also discussed. Numerical simulations seem to indicate that finite $\beta _e$ effects do not produce qualitative modifications in the structures of the Lagrangian invariants associated with Casimirs of the model.</description><identifier>ISSN: 0022-3778</identifier><identifier>EISSN: 1469-7807</identifier><identifier>DOI: 10.1017/S0022377822000010</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Collisionless plasmas ; Conservation laws ; Electron energy ; Energy ; Energy conservation ; Invariants ; Ion temperature ; Laboratories ; Larmor radius ; Magnetic fields ; Mathematical models ; Perturbation ; Physics ; Plasma Physics ; Simulation ; Stability analysis ; Tearing</subject><ispartof>Journal of plasma physics, 2022-02, Vol.88 (1), Article 905880111</ispartof><rights>Copyright © The Author(s), 2022. Published by Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3570-23929669da2b1a3741e61f3be2d77a36a5385ab32210c72b84416617bed3a6943</citedby><cites>FETCH-LOGICAL-c3570-23929669da2b1a3741e61f3be2d77a36a5385ab32210c72b84416617bed3a6943</cites><orcidid>0000-0002-7700-112X ; 0000-0001-7522-3805 ; 0000-0001-6831-1014 ; 0000-0003-2841-8153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022377822000010/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,776,780,881,27901,27902,55603</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03562625$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Granier, C.</creatorcontrib><creatorcontrib>Borgogno, D.</creatorcontrib><creatorcontrib>Grasso, D.</creatorcontrib><creatorcontrib>Tassi, E.</creatorcontrib><title>Gyrofluid analysis of electron βe effects on collisionless reconnection</title><title>Journal of plasma physics</title><addtitle>J. Plasma Phys</addtitle><description>The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$. The finite $\beta _e$ effect implies a magnetic perturbation along the guide field direction, and electron finite Larmor radius effects. A Hamiltonian derivation of the model is presented. A new dispersion relation of the tearing instability is derived for the case $\beta _e=0$ and tested against numerical simulations. For $\beta _e \ll 1$ the equilibrium electron temperature is seen to enhance the linear growth rate, whereas we observe a stabilizing role when electron finite Larmor radius effects become more relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects. Energy transfers are analysed and the conservation laws associated with the Casimir invariants of the model are also discussed. Numerical simulations seem to indicate that finite $\beta _e$ effects do not produce qualitative modifications in the structures of the Lagrangian invariants associated with Casimirs of the model.</description><subject>Collisionless plasmas</subject><subject>Conservation laws</subject><subject>Electron energy</subject><subject>Energy</subject><subject>Energy conservation</subject><subject>Invariants</subject><subject>Ion temperature</subject><subject>Laboratories</subject><subject>Larmor radius</subject><subject>Magnetic fields</subject><subject>Mathematical models</subject><subject>Perturbation</subject><subject>Physics</subject><subject>Plasma Physics</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Tearing</subject><issn>0022-3778</issn><issn>1469-7807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEURYMoWKsf4C7gysVo8jKTTJalaCsUXKjrkJlJNCWd1KQV-lt-iN9khhZdiG8T3r3nXshD6JKSG0qouH0iBIAJUQOQPJQcoREtuSxETcQxGg12Mfin6CylZUYYATFC89kuBuu3rsO6136XXMLBYuNNu4mhx1-fBhtr85b1HrfBe5dc6L1JCUfThr7PXhbO0YnVPpmLwztGL_d3z9N5sXicPUwni6JllSAFMAmSc9lpaKhmoqSGU8saA50QmnFdsbrSDQOgpBXQ1GVJOaeiMR3TXJZsjK73vW_aq3V0Kx13Kmin5pOFGjTCKg4cqg-a2as9u47hfWvSRi3DNuZvJpWJ3EqkFJmie6qNIaVo7E8tJWo4rvpz3Jxhh4xeNdF1r-a3-v_UN8Y2edI</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Granier, C.</creator><creator>Borgogno, D.</creator><creator>Grasso, D.</creator><creator>Tassi, E.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7700-112X</orcidid><orcidid>https://orcid.org/0000-0001-7522-3805</orcidid><orcidid>https://orcid.org/0000-0001-6831-1014</orcidid><orcidid>https://orcid.org/0000-0003-2841-8153</orcidid></search><sort><creationdate>20220201</creationdate><title>Gyrofluid analysis of electron βe effects on collisionless reconnection</title><author>Granier, C. ; Borgogno, D. ; Grasso, D. ; Tassi, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3570-23929669da2b1a3741e61f3be2d77a36a5385ab32210c72b84416617bed3a6943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Collisionless plasmas</topic><topic>Conservation laws</topic><topic>Electron energy</topic><topic>Energy</topic><topic>Energy conservation</topic><topic>Invariants</topic><topic>Ion temperature</topic><topic>Laboratories</topic><topic>Larmor radius</topic><topic>Magnetic fields</topic><topic>Mathematical models</topic><topic>Perturbation</topic><topic>Physics</topic><topic>Plasma Physics</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Tearing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Granier, C.</creatorcontrib><creatorcontrib>Borgogno, D.</creatorcontrib><creatorcontrib>Grasso, D.</creatorcontrib><creatorcontrib>Tassi, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of plasma physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Granier, C.</au><au>Borgogno, D.</au><au>Grasso, D.</au><au>Tassi, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gyrofluid analysis of electron βe effects on collisionless reconnection</atitle><jtitle>Journal of plasma physics</jtitle><addtitle>J. Plasma Phys</addtitle><date>2022-02-01</date><risdate>2022</risdate><volume>88</volume><issue>1</issue><artnum>905880111</artnum><issn>0022-3778</issn><eissn>1469-7807</eissn><abstract>The linear and nonlinear evolutions of the tearing instability in a collisionless plasma with a strong guide field are analysed on the basis of a two-field Hamiltonian gyrofluid model. The model is valid for a low ion temperature and a finite $\beta _e$. The finite $\beta _e$ effect implies a magnetic perturbation along the guide field direction, and electron finite Larmor radius effects. A Hamiltonian derivation of the model is presented. A new dispersion relation of the tearing instability is derived for the case $\beta _e=0$ and tested against numerical simulations. For $\beta _e \ll 1$ the equilibrium electron temperature is seen to enhance the linear growth rate, whereas we observe a stabilizing role when electron finite Larmor radius effects become more relevant. In the nonlinear phase, stall phases and faster than exponential phases are observed, similarly to what occurs in the presence of ion finite Larmor radius effects. Energy transfers are analysed and the conservation laws associated with the Casimir invariants of the model are also discussed. Numerical simulations seem to indicate that finite $\beta _e$ effects do not produce qualitative modifications in the structures of the Lagrangian invariants associated with Casimirs of the model.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022377822000010</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-7700-112X</orcidid><orcidid>https://orcid.org/0000-0001-7522-3805</orcidid><orcidid>https://orcid.org/0000-0001-6831-1014</orcidid><orcidid>https://orcid.org/0000-0003-2841-8153</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3778
ispartof Journal of plasma physics, 2022-02, Vol.88 (1), Article 905880111
issn 0022-3778
1469-7807
language eng
recordid cdi_hal_primary_oai_HAL_hal_03562625v1
source Cambridge University Press Journals Complete
subjects Collisionless plasmas
Conservation laws
Electron energy
Energy
Energy conservation
Invariants
Ion temperature
Laboratories
Larmor radius
Magnetic fields
Mathematical models
Perturbation
Physics
Plasma Physics
Simulation
Stability analysis
Tearing
title Gyrofluid analysis of electron βe effects on collisionless reconnection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A01%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gyrofluid%20analysis%20of%20electron%20%CE%B2e%20effects%20on%20collisionless%20reconnection&rft.jtitle=Journal%20of%20plasma%20physics&rft.au=Granier,%20C.&rft.date=2022-02-01&rft.volume=88&rft.issue=1&rft.artnum=905880111&rft.issn=0022-3778&rft.eissn=1469-7807&rft_id=info:doi/10.1017/S0022377822000010&rft_dat=%3Cproquest_hal_p%3E2626170997%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626170997&rft_id=info:pmid/&rft_cupid=10_1017_S0022377822000010&rfr_iscdi=true