Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors

Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2010-04, Vol.328 (5977), p.480-483
Hauptverfasser: Chmiola, John, Largeot, Celine, Taberna, Pierre-Louis, Simon, Patrice, Gogotsi, Yury
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 483
container_issue 5977
container_start_page 480
container_title Science (American Association for the Advancement of Science)
container_volume 328
creator Chmiola, John
Largeot, Celine
Taberna, Pierre-Louis
Simon, Patrice
Gogotsi, Yury
description Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.
doi_str_mv 10.1126/science.1184126
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03556866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40655782</jstor_id><sourcerecordid>40655782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxa0K1KaFMycgqoQqDtuOP9c-RoG2SKl6KD1bXq9NHW3Wwc5W4r_HYZcgcYGLrfH7eUbzHkJvMFxiTMRVtsH11pVCslIfoRkGxStFgL5AMwAqKgk1P0GnOa8BiqboMTohwDBlqp6hxV3sYxd2T8HOlyY1oXXVJ5fCs2t_1bGfX4duk-c-pvldsClWD8PWJWu2xoZdTPkVeulNl93r6T5Dj9efvy5vq9X9zZflYlVZUfNdRTD10kvGmOestcJw2jBlG6x8S4RogAInhslaKFa3SlKJgQPnxHKPcW3pGfo49n0ynd6msDHph44m6NvFSu_fgHIupBDPuLAXI7tN8fvg8k5vQrau60zv4pB1zbhQWCr6HyQVgHlx8p8kpcVcwfbTz_8i13FIfTFHFxcEkHIW6GqEiqU5J-cPO2HQ-2z1lK2esi0_3k1th2bj2gP_O8wCfJgAk63pfDK9DfkPRwQXmOw3eTty61wCPOgMBOe1JEV_P-reRG2-pdLj8YEApoAlxVIC_Qn29ruj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213602213</pqid></control><display><type>article</type><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</creator><creatorcontrib>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</creatorcontrib><description>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1184126</identifier><identifier>PMID: 20413497</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Applied sciences ; Batteries ; Capacitance ; Capacitors. Resistors. Filters ; Carbides ; Carbon ; Chemical Sciences ; Coatings ; Design. Technologies. Operation analysis. Testing ; Dielectric, amorphous and glass solid devices ; Electrical engineering. Electrical power engineering ; Electrochemical capacitors ; Electrodes ; Electrolytes ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Film thickness ; Integrated circuits ; Material chemistry ; Material films ; Materials ; Materials science ; Microelectronic fabrication (materials and surfaces technology) ; Microelectronics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin films ; Various equipment and components</subject><ispartof>Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5977), p.480-483</ispartof><rights>2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</citedby><cites>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</cites><orcidid>0000-0002-0461-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40655782$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40655782$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22656120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20413497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03556866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chmiola, John</creatorcontrib><creatorcontrib>Largeot, Celine</creatorcontrib><creatorcontrib>Taberna, Pierre-Louis</creatorcontrib><creatorcontrib>Simon, Patrice</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors. Resistors. Filters</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Chemical Sciences</subject><subject>Coatings</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrochemical capacitors</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Film thickness</subject><subject>Integrated circuits</subject><subject>Material chemistry</subject><subject>Material films</subject><subject>Materials</subject><subject>Materials science</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microelectronics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin films</subject><subject>Various equipment and components</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkc1vEzEQxa0K1KaFMycgqoQqDtuOP9c-RoG2SKl6KD1bXq9NHW3Wwc5W4r_HYZcgcYGLrfH7eUbzHkJvMFxiTMRVtsH11pVCslIfoRkGxStFgL5AMwAqKgk1P0GnOa8BiqboMTohwDBlqp6hxV3sYxd2T8HOlyY1oXXVJ5fCs2t_1bGfX4duk-c-pvldsClWD8PWJWu2xoZdTPkVeulNl93r6T5Dj9efvy5vq9X9zZflYlVZUfNdRTD10kvGmOestcJw2jBlG6x8S4RogAInhslaKFa3SlKJgQPnxHKPcW3pGfo49n0ynd6msDHph44m6NvFSu_fgHIupBDPuLAXI7tN8fvg8k5vQrau60zv4pB1zbhQWCr6HyQVgHlx8p8kpcVcwfbTz_8i13FIfTFHFxcEkHIW6GqEiqU5J-cPO2HQ-2z1lK2esi0_3k1th2bj2gP_O8wCfJgAk63pfDK9DfkPRwQXmOw3eTty61wCPOgMBOe1JEV_P-reRG2-pdLj8YEApoAlxVIC_Qn29ruj</recordid><startdate>20100423</startdate><enddate>20100423</enddate><creator>Chmiola, John</creator><creator>Largeot, Celine</creator><creator>Taberna, Pierre-Louis</creator><creator>Simon, Patrice</creator><creator>Gogotsi, Yury</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0461-8268</orcidid></search><sort><creationdate>20100423</creationdate><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><author>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors. Resistors. Filters</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Chemical Sciences</topic><topic>Coatings</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrochemical capacitors</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Film thickness</topic><topic>Integrated circuits</topic><topic>Material chemistry</topic><topic>Material films</topic><topic>Materials</topic><topic>Materials science</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microelectronics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin films</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chmiola, John</creatorcontrib><creatorcontrib>Largeot, Celine</creatorcontrib><creatorcontrib>Taberna, Pierre-Louis</creatorcontrib><creatorcontrib>Simon, Patrice</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chmiola, John</au><au>Largeot, Celine</au><au>Taberna, Pierre-Louis</au><au>Simon, Patrice</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-04-23</date><risdate>2010</risdate><volume>328</volume><issue>5977</issue><spage>480</spage><epage>483</epage><pages>480-483</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20413497</pmid><doi>10.1126/science.1184126</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0461-8268</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5977), p.480-483
issn 0036-8075
1095-9203
language eng
recordid cdi_hal_primary_oai_HAL_hal_03556866v1
source Science Magazine; JSTOR Archive Collection A-Z Listing
subjects Applied sciences
Batteries
Capacitance
Capacitors. Resistors. Filters
Carbides
Carbon
Chemical Sciences
Coatings
Design. Technologies. Operation analysis. Testing
Dielectric, amorphous and glass solid devices
Electrical engineering. Electrical power engineering
Electrochemical capacitors
Electrodes
Electrolytes
Electronics
Engineering Sciences
Exact sciences and technology
Film thickness
Integrated circuits
Material chemistry
Material films
Materials
Materials science
Microelectronic fabrication (materials and surfaces technology)
Microelectronics
Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices
Thin films
Various equipment and components
title Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20Carbide-Derived%20Carbon%20Films%20for%20Micro-Supercapacitors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chmiola,%20John&rft.date=2010-04-23&rft.volume=328&rft.issue=5977&rft.spage=480&rft.epage=483&rft.pages=480-483&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1184126&rft_dat=%3Cjstor_hal_p%3E40655782%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213602213&rft_id=info:pmid/20413497&rft_jstor_id=40655782&rfr_iscdi=true