Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors
Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation is...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2010-04, Vol.328 (5977), p.480-483 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 483 |
---|---|
container_issue | 5977 |
container_start_page | 480 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 328 |
creator | Chmiola, John Largeot, Celine Taberna, Pierre-Louis Simon, Patrice Gogotsi, Yury |
description | Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices. |
doi_str_mv | 10.1126/science.1184126 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03556866v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40655782</jstor_id><sourcerecordid>40655782</sourcerecordid><originalsourceid>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</originalsourceid><addsrcrecordid>eNqNkc1vEzEQxa0K1KaFMycgqoQqDtuOP9c-RoG2SKl6KD1bXq9NHW3Wwc5W4r_HYZcgcYGLrfH7eUbzHkJvMFxiTMRVtsH11pVCslIfoRkGxStFgL5AMwAqKgk1P0GnOa8BiqboMTohwDBlqp6hxV3sYxd2T8HOlyY1oXXVJ5fCs2t_1bGfX4duk-c-pvldsClWD8PWJWu2xoZdTPkVeulNl93r6T5Dj9efvy5vq9X9zZflYlVZUfNdRTD10kvGmOestcJw2jBlG6x8S4RogAInhslaKFa3SlKJgQPnxHKPcW3pGfo49n0ynd6msDHph44m6NvFSu_fgHIupBDPuLAXI7tN8fvg8k5vQrau60zv4pB1zbhQWCr6HyQVgHlx8p8kpcVcwfbTz_8i13FIfTFHFxcEkHIW6GqEiqU5J-cPO2HQ-2z1lK2esi0_3k1th2bj2gP_O8wCfJgAk63pfDK9DfkPRwQXmOw3eTty61wCPOgMBOe1JEV_P-reRG2-pdLj8YEApoAlxVIC_Qn29ruj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213602213</pqid></control><display><type>article</type><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><source>Science Magazine</source><source>JSTOR Archive Collection A-Z Listing</source><creator>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</creator><creatorcontrib>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</creatorcontrib><description>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1184126</identifier><identifier>PMID: 20413497</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>Applied sciences ; Batteries ; Capacitance ; Capacitors. Resistors. Filters ; Carbides ; Carbon ; Chemical Sciences ; Coatings ; Design. Technologies. Operation analysis. Testing ; Dielectric, amorphous and glass solid devices ; Electrical engineering. Electrical power engineering ; Electrochemical capacitors ; Electrodes ; Electrolytes ; Electronics ; Engineering Sciences ; Exact sciences and technology ; Film thickness ; Integrated circuits ; Material chemistry ; Material films ; Materials ; Materials science ; Microelectronic fabrication (materials and surfaces technology) ; Microelectronics ; Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices ; Thin films ; Various equipment and components</subject><ispartof>Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5977), p.480-483</ispartof><rights>2010 American Association for the Advancement of Science</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2010, American Association for the Advancement of Science</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</citedby><cites>FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</cites><orcidid>0000-0002-0461-8268</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40655782$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40655782$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,2882,2883,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22656120$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20413497$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03556866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Chmiola, John</creatorcontrib><creatorcontrib>Largeot, Celine</creatorcontrib><creatorcontrib>Taberna, Pierre-Louis</creatorcontrib><creatorcontrib>Simon, Patrice</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</description><subject>Applied sciences</subject><subject>Batteries</subject><subject>Capacitance</subject><subject>Capacitors. Resistors. Filters</subject><subject>Carbides</subject><subject>Carbon</subject><subject>Chemical Sciences</subject><subject>Coatings</subject><subject>Design. Technologies. Operation analysis. Testing</subject><subject>Dielectric, amorphous and glass solid devices</subject><subject>Electrical engineering. Electrical power engineering</subject><subject>Electrochemical capacitors</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electronics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Film thickness</subject><subject>Integrated circuits</subject><subject>Material chemistry</subject><subject>Material films</subject><subject>Materials</subject><subject>Materials science</subject><subject>Microelectronic fabrication (materials and surfaces technology)</subject><subject>Microelectronics</subject><subject>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</subject><subject>Thin films</subject><subject>Various equipment and components</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkc1vEzEQxa0K1KaFMycgqoQqDtuOP9c-RoG2SKl6KD1bXq9NHW3Wwc5W4r_HYZcgcYGLrfH7eUbzHkJvMFxiTMRVtsH11pVCslIfoRkGxStFgL5AMwAqKgk1P0GnOa8BiqboMTohwDBlqp6hxV3sYxd2T8HOlyY1oXXVJ5fCs2t_1bGfX4duk-c-pvldsClWD8PWJWu2xoZdTPkVeulNl93r6T5Dj9efvy5vq9X9zZflYlVZUfNdRTD10kvGmOestcJw2jBlG6x8S4RogAInhslaKFa3SlKJgQPnxHKPcW3pGfo49n0ynd6msDHph44m6NvFSu_fgHIupBDPuLAXI7tN8fvg8k5vQrau60zv4pB1zbhQWCr6HyQVgHlx8p8kpcVcwfbTz_8i13FIfTFHFxcEkHIW6GqEiqU5J-cPO2HQ-2z1lK2esi0_3k1th2bj2gP_O8wCfJgAk63pfDK9DfkPRwQXmOw3eTty61wCPOgMBOe1JEV_P-reRG2-pdLj8YEApoAlxVIC_Qn29ruj</recordid><startdate>20100423</startdate><enddate>20100423</enddate><creator>Chmiola, John</creator><creator>Largeot, Celine</creator><creator>Taberna, Pierre-Louis</creator><creator>Simon, Patrice</creator><creator>Gogotsi, Yury</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><general>American Association for the Advancement of Science (AAAS)</general><scope>FBQ</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-0461-8268</orcidid></search><sort><creationdate>20100423</creationdate><title>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</title><author>Chmiola, John ; Largeot, Celine ; Taberna, Pierre-Louis ; Simon, Patrice ; Gogotsi, Yury</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c675t-213f8f8444f54dc6a53b49cb19fd266b03052a4876947d98381050552c5f117c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Batteries</topic><topic>Capacitance</topic><topic>Capacitors. Resistors. Filters</topic><topic>Carbides</topic><topic>Carbon</topic><topic>Chemical Sciences</topic><topic>Coatings</topic><topic>Design. Technologies. Operation analysis. Testing</topic><topic>Dielectric, amorphous and glass solid devices</topic><topic>Electrical engineering. Electrical power engineering</topic><topic>Electrochemical capacitors</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electronics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Film thickness</topic><topic>Integrated circuits</topic><topic>Material chemistry</topic><topic>Material films</topic><topic>Materials</topic><topic>Materials science</topic><topic>Microelectronic fabrication (materials and surfaces technology)</topic><topic>Microelectronics</topic><topic>Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices</topic><topic>Thin films</topic><topic>Various equipment and components</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chmiola, John</creatorcontrib><creatorcontrib>Largeot, Celine</creatorcontrib><creatorcontrib>Taberna, Pierre-Louis</creatorcontrib><creatorcontrib>Simon, Patrice</creatorcontrib><creatorcontrib>Gogotsi, Yury</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chmiola, John</au><au>Largeot, Celine</au><au>Taberna, Pierre-Louis</au><au>Simon, Patrice</au><au>Gogotsi, Yury</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2010-04-23</date><risdate>2010</risdate><volume>328</volume><issue>5977</issue><spage>480</spage><epage>483</epage><pages>480-483</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Microbatteries with dimensions of tens to hundreds of micrometers that are produced by common microfabrication techniques are poised to provide integration of power sources onto electronic devices, but they still suffer from poor cycle lifetime, as well as power and temperature range of operation issues that are alleviated with the use of supercapacitors. There have been a few reports on thin-film and other micro-supercapacitors, but they are either too thin to provide sufficient energy or the technology is not scalable. By etching supercapacitor electrodes into conductive titanium carbide substrates, we demonstrate that monolithic carbon films lead to a volumetric capacity exceeding that of micro- and macroscale supercapacitors reported thus far, by a factor of 2. This study also provides the framework for integration of high-performance micro-supercapacitors onto a variety of devices.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>20413497</pmid><doi>10.1126/science.1184126</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-0461-8268</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2010-04, Vol.328 (5977), p.480-483 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03556866v1 |
source | Science Magazine; JSTOR Archive Collection A-Z Listing |
subjects | Applied sciences Batteries Capacitance Capacitors. Resistors. Filters Carbides Carbon Chemical Sciences Coatings Design. Technologies. Operation analysis. Testing Dielectric, amorphous and glass solid devices Electrical engineering. Electrical power engineering Electrochemical capacitors Electrodes Electrolytes Electronics Engineering Sciences Exact sciences and technology Film thickness Integrated circuits Material chemistry Material films Materials Materials science Microelectronic fabrication (materials and surfaces technology) Microelectronics Semiconductor electronics. Microelectronics. Optoelectronics. Solid state devices Thin films Various equipment and components |
title | Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A25%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monolithic%20Carbide-Derived%20Carbon%20Films%20for%20Micro-Supercapacitors&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chmiola,%20John&rft.date=2010-04-23&rft.volume=328&rft.issue=5977&rft.spage=480&rft.epage=483&rft.pages=480-483&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1184126&rft_dat=%3Cjstor_hal_p%3E40655782%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213602213&rft_id=info:pmid/20413497&rft_jstor_id=40655782&rfr_iscdi=true |