Ultra-clean high-mobility graphene on technologically relevant substrates

Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications requir...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2022-02, Vol.14 (6), p.2167-2176
Hauptverfasser: Tyagi, Ayush, Mišeikis, Vaidotas, Martini, Leonardo, Forti, Stiven, Mishra, Neeraj, Gebeyehu, Zewdu M, Giambra, Marco A, Zribi, Jihene, Frégnaux, Mathieu, Aureau, Damien, Romagnoli, Marco, Beltram, Fabio, Coletti, Camilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2176
container_issue 6
container_start_page 2167
container_title Nanoscale
container_volume 14
creator Tyagi, Ayush
Mišeikis, Vaidotas
Martini, Leonardo
Forti, Stiven
Mishra, Neeraj
Gebeyehu, Zewdu M
Giambra, Marco A
Zribi, Jihene
Frégnaux, Mathieu
Aureau, Damien
Romagnoli, Marco
Beltram, Fabio
Coletti, Camilla
description Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene ( i.e. , approaching 10 000 cm 2 V −1 s −1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO 2 /Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility μ h up to ∼9000 cm 2 V −1 s −1 and electron mobility μ e up to ∼8000 cm 2 V −1 s −1 , with average values μ h ∼ 7500 cm 2 V −1 s −1 and μ e ∼ 6300 cm 2 V −1 s −1 . The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics. 2-step chemical cleaning allows enhanced removal of polymeric residues from the surface of graphene, leading to significantly improved electrical and morphological properties.
doi_str_mv 10.1039/d1nr05904a
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03556278v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622958970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-5da232c2c1c713ec0b596bf2343a54390c9d406c168f9f9e844f3cf4c9c63e1e3</originalsourceid><addsrcrecordid>eNpd0c1LwzAYBvAgipvTi3el4EWFar6aNscxPzYYCuLOJc3erh1ZM5N2sP_ezs4JnhKSHw958yB0SfADwUw-zknlcCQxV0eoTzHHIWMxPT7sBe-hM--XGAvJBDtFPRbhBEeR6KPJzNROhdqAqoKiXBThymalKettsHBqXUAFga2CGnRRWWMXpVbGbAMHBjaqqgPfZL4NqMGfo5NcGQ8X-3WAZi_Pn6NxOH1_nYyG01BzntRhNFeUUU010TFhoHEWSZHllHGmIs4k1nLOsdBEJLnMJSSc50znXEstGBBgA3TX5RbKpGtXrpTbplaV6Xg4TXdnmLWT0TjZkNbednbt7FcDvk5XpddgjKrANj6lglIZJTLGLb35R5e2cVU7yU7FlFAiRKvuO6Wd9d5BfngBwemujPSJvH38lDFs8fU-sslWMD_Q399vwVUHnNeH27822TedcYz_</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2627212166</pqid></control><display><type>article</type><title>Ultra-clean high-mobility graphene on technologically relevant substrates</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Tyagi, Ayush ; Mišeikis, Vaidotas ; Martini, Leonardo ; Forti, Stiven ; Mishra, Neeraj ; Gebeyehu, Zewdu M ; Giambra, Marco A ; Zribi, Jihene ; Frégnaux, Mathieu ; Aureau, Damien ; Romagnoli, Marco ; Beltram, Fabio ; Coletti, Camilla</creator><creatorcontrib>Tyagi, Ayush ; Mišeikis, Vaidotas ; Martini, Leonardo ; Forti, Stiven ; Mishra, Neeraj ; Gebeyehu, Zewdu M ; Giambra, Marco A ; Zribi, Jihene ; Frégnaux, Mathieu ; Aureau, Damien ; Romagnoli, Marco ; Beltram, Fabio ; Coletti, Camilla</creatorcontrib><description>Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene ( i.e. , approaching 10 000 cm 2 V −1 s −1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO 2 /Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility μ h up to ∼9000 cm 2 V −1 s −1 and electron mobility μ e up to ∼8000 cm 2 V −1 s −1 , with average values μ h ∼ 7500 cm 2 V −1 s −1 and μ e ∼ 6300 cm 2 V −1 s −1 . The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics. 2-step chemical cleaning allows enhanced removal of polymeric residues from the surface of graphene, leading to significantly improved electrical and morphological properties.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/d1nr05904a</identifier><identifier>PMID: 35080556</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Atomic force microscopy ; Carrier mobility ; Chemical Sciences ; Chemical vapor deposition ; Cleaning ; Electrical properties ; Electron mobility ; Encapsulation ; Graphene ; Hole mobility ; Metal foils ; Optoelectronics ; Photoelectrons ; Photonics ; Room temperature ; Silicon dioxide ; Silicon substrates ; X ray photoelectron spectroscopy</subject><ispartof>Nanoscale, 2022-02, Vol.14 (6), p.2167-2176</ispartof><rights>Copyright Royal Society of Chemistry 2022</rights><rights>Attribution - NonCommercial</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-5da232c2c1c713ec0b596bf2343a54390c9d406c168f9f9e844f3cf4c9c63e1e3</citedby><cites>FETCH-LOGICAL-c448t-5da232c2c1c713ec0b596bf2343a54390c9d406c168f9f9e844f3cf4c9c63e1e3</cites><orcidid>0000-0001-6263-4250 ; 0000-0002-5310-5688 ; 0000-0002-8939-3175 ; 0000-0001-6451-6100 ; 0000-0003-3667-662X ; 0000-0002-3915-3982 ; 0000-0002-6081-436X ; 0000-0001-9669-1480 ; 0000-0003-4574-7215</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35080556$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03556278$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tyagi, Ayush</creatorcontrib><creatorcontrib>Mišeikis, Vaidotas</creatorcontrib><creatorcontrib>Martini, Leonardo</creatorcontrib><creatorcontrib>Forti, Stiven</creatorcontrib><creatorcontrib>Mishra, Neeraj</creatorcontrib><creatorcontrib>Gebeyehu, Zewdu M</creatorcontrib><creatorcontrib>Giambra, Marco A</creatorcontrib><creatorcontrib>Zribi, Jihene</creatorcontrib><creatorcontrib>Frégnaux, Mathieu</creatorcontrib><creatorcontrib>Aureau, Damien</creatorcontrib><creatorcontrib>Romagnoli, Marco</creatorcontrib><creatorcontrib>Beltram, Fabio</creatorcontrib><creatorcontrib>Coletti, Camilla</creatorcontrib><title>Ultra-clean high-mobility graphene on technologically relevant substrates</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene ( i.e. , approaching 10 000 cm 2 V −1 s −1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO 2 /Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility μ h up to ∼9000 cm 2 V −1 s −1 and electron mobility μ e up to ∼8000 cm 2 V −1 s −1 , with average values μ h ∼ 7500 cm 2 V −1 s −1 and μ e ∼ 6300 cm 2 V −1 s −1 . The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics. 2-step chemical cleaning allows enhanced removal of polymeric residues from the surface of graphene, leading to significantly improved electrical and morphological properties.</description><subject>Atomic force microscopy</subject><subject>Carrier mobility</subject><subject>Chemical Sciences</subject><subject>Chemical vapor deposition</subject><subject>Cleaning</subject><subject>Electrical properties</subject><subject>Electron mobility</subject><subject>Encapsulation</subject><subject>Graphene</subject><subject>Hole mobility</subject><subject>Metal foils</subject><subject>Optoelectronics</subject><subject>Photoelectrons</subject><subject>Photonics</subject><subject>Room temperature</subject><subject>Silicon dioxide</subject><subject>Silicon substrates</subject><subject>X ray photoelectron spectroscopy</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpd0c1LwzAYBvAgipvTi3el4EWFar6aNscxPzYYCuLOJc3erh1ZM5N2sP_ezs4JnhKSHw958yB0SfADwUw-zknlcCQxV0eoTzHHIWMxPT7sBe-hM--XGAvJBDtFPRbhBEeR6KPJzNROhdqAqoKiXBThymalKettsHBqXUAFga2CGnRRWWMXpVbGbAMHBjaqqgPfZL4NqMGfo5NcGQ8X-3WAZi_Pn6NxOH1_nYyG01BzntRhNFeUUU010TFhoHEWSZHllHGmIs4k1nLOsdBEJLnMJSSc50znXEstGBBgA3TX5RbKpGtXrpTbplaV6Xg4TXdnmLWT0TjZkNbednbt7FcDvk5XpddgjKrANj6lglIZJTLGLb35R5e2cVU7yU7FlFAiRKvuO6Wd9d5BfngBwemujPSJvH38lDFs8fU-sslWMD_Q399vwVUHnNeH27822TedcYz_</recordid><startdate>20220210</startdate><enddate>20220210</enddate><creator>Tyagi, Ayush</creator><creator>Mišeikis, Vaidotas</creator><creator>Martini, Leonardo</creator><creator>Forti, Stiven</creator><creator>Mishra, Neeraj</creator><creator>Gebeyehu, Zewdu M</creator><creator>Giambra, Marco A</creator><creator>Zribi, Jihene</creator><creator>Frégnaux, Mathieu</creator><creator>Aureau, Damien</creator><creator>Romagnoli, Marco</creator><creator>Beltram, Fabio</creator><creator>Coletti, Camilla</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-6263-4250</orcidid><orcidid>https://orcid.org/0000-0002-5310-5688</orcidid><orcidid>https://orcid.org/0000-0002-8939-3175</orcidid><orcidid>https://orcid.org/0000-0001-6451-6100</orcidid><orcidid>https://orcid.org/0000-0003-3667-662X</orcidid><orcidid>https://orcid.org/0000-0002-3915-3982</orcidid><orcidid>https://orcid.org/0000-0002-6081-436X</orcidid><orcidid>https://orcid.org/0000-0001-9669-1480</orcidid><orcidid>https://orcid.org/0000-0003-4574-7215</orcidid></search><sort><creationdate>20220210</creationdate><title>Ultra-clean high-mobility graphene on technologically relevant substrates</title><author>Tyagi, Ayush ; Mišeikis, Vaidotas ; Martini, Leonardo ; Forti, Stiven ; Mishra, Neeraj ; Gebeyehu, Zewdu M ; Giambra, Marco A ; Zribi, Jihene ; Frégnaux, Mathieu ; Aureau, Damien ; Romagnoli, Marco ; Beltram, Fabio ; Coletti, Camilla</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-5da232c2c1c713ec0b596bf2343a54390c9d406c168f9f9e844f3cf4c9c63e1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopy</topic><topic>Carrier mobility</topic><topic>Chemical Sciences</topic><topic>Chemical vapor deposition</topic><topic>Cleaning</topic><topic>Electrical properties</topic><topic>Electron mobility</topic><topic>Encapsulation</topic><topic>Graphene</topic><topic>Hole mobility</topic><topic>Metal foils</topic><topic>Optoelectronics</topic><topic>Photoelectrons</topic><topic>Photonics</topic><topic>Room temperature</topic><topic>Silicon dioxide</topic><topic>Silicon substrates</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tyagi, Ayush</creatorcontrib><creatorcontrib>Mišeikis, Vaidotas</creatorcontrib><creatorcontrib>Martini, Leonardo</creatorcontrib><creatorcontrib>Forti, Stiven</creatorcontrib><creatorcontrib>Mishra, Neeraj</creatorcontrib><creatorcontrib>Gebeyehu, Zewdu M</creatorcontrib><creatorcontrib>Giambra, Marco A</creatorcontrib><creatorcontrib>Zribi, Jihene</creatorcontrib><creatorcontrib>Frégnaux, Mathieu</creatorcontrib><creatorcontrib>Aureau, Damien</creatorcontrib><creatorcontrib>Romagnoli, Marco</creatorcontrib><creatorcontrib>Beltram, Fabio</creatorcontrib><creatorcontrib>Coletti, Camilla</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tyagi, Ayush</au><au>Mišeikis, Vaidotas</au><au>Martini, Leonardo</au><au>Forti, Stiven</au><au>Mishra, Neeraj</au><au>Gebeyehu, Zewdu M</au><au>Giambra, Marco A</au><au>Zribi, Jihene</au><au>Frégnaux, Mathieu</au><au>Aureau, Damien</au><au>Romagnoli, Marco</au><au>Beltram, Fabio</au><au>Coletti, Camilla</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultra-clean high-mobility graphene on technologically relevant substrates</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2022-02-10</date><risdate>2022</risdate><volume>14</volume><issue>6</issue><spage>2167</spage><epage>2176</epage><pages>2167-2176</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Graphene grown via chemical vapour deposition (CVD) on copper foil has emerged as a high-quality, scalable material, that can be easily integrated on technologically relevant platforms to develop promising applications in the fields of optoelectronics and photonics. Most of these applications require low-contaminated high-mobility graphene ( i.e. , approaching 10 000 cm 2 V −1 s −1 at room temperature) to reduce device losses and implement compact device design. To date, these mobility values are only obtained when suspending or encapsulating graphene. Here, we demonstrate a rapid, facile, and scalable cleaning process, that yields high-mobility graphene directly on the most common technologically relevant substrate: silicon dioxide on silicon (SiO 2 /Si). Atomic force microscopy (AFM) and spatially-resolved X-ray photoelectron spectroscopy (XPS) demonstrate that this approach is instrumental to rapidly eliminate most of the polymeric residues which remain on graphene after transfer and fabrication and that have adverse effects on its electrical properties. Raman measurements show a significant reduction of graphene doping and strain. Transport measurements of 50 Hall bars (HBs) yield hole mobility μ h up to ∼9000 cm 2 V −1 s −1 and electron mobility μ e up to ∼8000 cm 2 V −1 s −1 , with average values μ h ∼ 7500 cm 2 V −1 s −1 and μ e ∼ 6300 cm 2 V −1 s −1 . The carrier mobility of ultraclean graphene reaches values nearly double than those measured in graphene processed with acetone cleaning, which is the method widely adopted in the field. Notably, these mobility values are obtained over large-scale and without encapsulation, thus paving the way to the adoption of graphene in optoelectronics and photonics. 2-step chemical cleaning allows enhanced removal of polymeric residues from the surface of graphene, leading to significantly improved electrical and morphological properties.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>35080556</pmid><doi>10.1039/d1nr05904a</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6263-4250</orcidid><orcidid>https://orcid.org/0000-0002-5310-5688</orcidid><orcidid>https://orcid.org/0000-0002-8939-3175</orcidid><orcidid>https://orcid.org/0000-0001-6451-6100</orcidid><orcidid>https://orcid.org/0000-0003-3667-662X</orcidid><orcidid>https://orcid.org/0000-0002-3915-3982</orcidid><orcidid>https://orcid.org/0000-0002-6081-436X</orcidid><orcidid>https://orcid.org/0000-0001-9669-1480</orcidid><orcidid>https://orcid.org/0000-0003-4574-7215</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2022-02, Vol.14 (6), p.2167-2176
issn 2040-3364
2040-3372
language eng
recordid cdi_hal_primary_oai_HAL_hal_03556278v1
source Royal Society Of Chemistry Journals 2008-
subjects Atomic force microscopy
Carrier mobility
Chemical Sciences
Chemical vapor deposition
Cleaning
Electrical properties
Electron mobility
Encapsulation
Graphene
Hole mobility
Metal foils
Optoelectronics
Photoelectrons
Photonics
Room temperature
Silicon dioxide
Silicon substrates
X ray photoelectron spectroscopy
title Ultra-clean high-mobility graphene on technologically relevant substrates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A24%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultra-clean%20high-mobility%20graphene%20on%20technologically%20relevant%20substrates&rft.jtitle=Nanoscale&rft.au=Tyagi,%20Ayush&rft.date=2022-02-10&rft.volume=14&rft.issue=6&rft.spage=2167&rft.epage=2176&rft.pages=2167-2176&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/d1nr05904a&rft_dat=%3Cproquest_hal_p%3E2622958970%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2627212166&rft_id=info:pmid/35080556&rfr_iscdi=true