Building a model of the brain: from detailed connectivity maps to network organization

The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological que...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2021-10, Vol.230 (14-15), p.2887-2909
Hauptverfasser: Shimoura, Renan Oliveira, Pena, Rodrigo F. O., Lima, Vinicius, Kamiji, Nilton L., Girardi-Schappo, Mauricio, Roque, Antonio C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2909
container_issue 14-15
container_start_page 2887
container_title The European physical journal. ST, Special topics
container_volume 230
creator Shimoura, Renan Oliveira
Pena, Rodrigo F. O.
Lima, Vinicius
Kamiji, Nilton L.
Girardi-Schappo, Mauricio
Roque, Antonio C.
description The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.
doi_str_mv 10.1140/epjs/s11734-021-00152-7
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03553445v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596618768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhiNEpS6UZ6ilnnoIeOw4dnrbrlpAWolLy9XyJuNdL1k7tb0geHqypMCRk0fW9_-a-YriK9BzgIpe4LBNFwlA8qqkDEpKQbBSHhUzaASUdUXh-HXmQnwuTlLaUipq1vBZcftz7_rO-TUxZBc67EmwJG-QrKJx_gexMexIh9m4HjvSBu-xze7e5UeyM0MiORCP-SHEOxLi2nj3ZLIL_kvxyZo-4dn_97T4-_vXn8VVuby5vF7Ml2XLa5XLtmIKhVBg0AKiUpauZEUlSIa8FY1FAJQMpOC24syibVcMBHS0rWWjGn5afJ96N6bXQ3Q7Ex91ME5fzZf68EfHk3lViXsY2W8TO8Twb48p623YRz-up5lo6hqUrNVIyYlqY0gpon2rBaoPwvVBuJ6E61G4fhGu5ZhUUzKNCb_G-N7_UfQZ7_yGfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596618768</pqid></control><display><type>article</type><title>Building a model of the brain: from detailed connectivity maps to network organization</title><source>SpringerNature Journals</source><creator>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</creator><creatorcontrib>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</creatorcontrib><description>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-021-00152-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Brain ; Classical and Continuum Physics ; Cognitive science ; Condensed Matter Physics ; Connectivity ; Dynamical Phenomena in Complex Networks: Fundamentals and Applications ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Neuroscience ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Review ; Synapses</subject><ispartof>The European physical journal. ST, Special topics, 2021-10, Vol.230 (14-15), p.2887-2909</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</citedby><cites>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</cites><orcidid>0000-0001-7115-9041 ; 0000-0002-9111-4905 ; 0000-0003-1260-4840 ; 0000-0002-6580-5999 ; 0000-0002-2037-9746 ; 0000-0001-5006-6612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-021-00152-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-021-00152-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03553445$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimoura, Renan Oliveira</creatorcontrib><creatorcontrib>Pena, Rodrigo F. O.</creatorcontrib><creatorcontrib>Lima, Vinicius</creatorcontrib><creatorcontrib>Kamiji, Nilton L.</creatorcontrib><creatorcontrib>Girardi-Schappo, Mauricio</creatorcontrib><creatorcontrib>Roque, Antonio C.</creatorcontrib><title>Building a model of the brain: from detailed connectivity maps to network organization</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</description><subject>Atomic</subject><subject>Brain</subject><subject>Classical and Continuum Physics</subject><subject>Cognitive science</subject><subject>Condensed Matter Physics</subject><subject>Connectivity</subject><subject>Dynamical Phenomena in Complex Networks: Fundamentals and Applications</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Neuroscience</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Review</subject><subject>Synapses</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhiNEpS6UZ6ilnnoIeOw4dnrbrlpAWolLy9XyJuNdL1k7tb0geHqypMCRk0fW9_-a-YriK9BzgIpe4LBNFwlA8qqkDEpKQbBSHhUzaASUdUXh-HXmQnwuTlLaUipq1vBZcftz7_rO-TUxZBc67EmwJG-QrKJx_gexMexIh9m4HjvSBu-xze7e5UeyM0MiORCP-SHEOxLi2nj3ZLIL_kvxyZo-4dn_97T4-_vXn8VVuby5vF7Ml2XLa5XLtmIKhVBg0AKiUpauZEUlSIa8FY1FAJQMpOC24syibVcMBHS0rWWjGn5afJ96N6bXQ3Q7Ex91ME5fzZf68EfHk3lViXsY2W8TO8Twb48p623YRz-up5lo6hqUrNVIyYlqY0gpon2rBaoPwvVBuJ6E61G4fhGu5ZhUUzKNCb_G-N7_UfQZ7_yGfw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shimoura, Renan Oliveira</creator><creator>Pena, Rodrigo F. O.</creator><creator>Lima, Vinicius</creator><creator>Kamiji, Nilton L.</creator><creator>Girardi-Schappo, Mauricio</creator><creator>Roque, Antonio C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7115-9041</orcidid><orcidid>https://orcid.org/0000-0002-9111-4905</orcidid><orcidid>https://orcid.org/0000-0003-1260-4840</orcidid><orcidid>https://orcid.org/0000-0002-6580-5999</orcidid><orcidid>https://orcid.org/0000-0002-2037-9746</orcidid><orcidid>https://orcid.org/0000-0001-5006-6612</orcidid></search><sort><creationdate>20211001</creationdate><title>Building a model of the brain: from detailed connectivity maps to network organization</title><author>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic</topic><topic>Brain</topic><topic>Classical and Continuum Physics</topic><topic>Cognitive science</topic><topic>Condensed Matter Physics</topic><topic>Connectivity</topic><topic>Dynamical Phenomena in Complex Networks: Fundamentals and Applications</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Neuroscience</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Review</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimoura, Renan Oliveira</creatorcontrib><creatorcontrib>Pena, Rodrigo F. O.</creatorcontrib><creatorcontrib>Lima, Vinicius</creatorcontrib><creatorcontrib>Kamiji, Nilton L.</creatorcontrib><creatorcontrib>Girardi-Schappo, Mauricio</creatorcontrib><creatorcontrib>Roque, Antonio C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimoura, Renan Oliveira</au><au>Pena, Rodrigo F. O.</au><au>Lima, Vinicius</au><au>Kamiji, Nilton L.</au><au>Girardi-Schappo, Mauricio</au><au>Roque, Antonio C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a model of the brain: from detailed connectivity maps to network organization</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>230</volume><issue>14-15</issue><spage>2887</spage><epage>2909</epage><pages>2887-2909</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-021-00152-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7115-9041</orcidid><orcidid>https://orcid.org/0000-0002-9111-4905</orcidid><orcidid>https://orcid.org/0000-0003-1260-4840</orcidid><orcidid>https://orcid.org/0000-0002-6580-5999</orcidid><orcidid>https://orcid.org/0000-0002-2037-9746</orcidid><orcidid>https://orcid.org/0000-0001-5006-6612</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1951-6355
ispartof The European physical journal. ST, Special topics, 2021-10, Vol.230 (14-15), p.2887-2909
issn 1951-6355
1951-6401
language eng
recordid cdi_hal_primary_oai_HAL_hal_03553445v1
source SpringerNature Journals
subjects Atomic
Brain
Classical and Continuum Physics
Cognitive science
Condensed Matter Physics
Connectivity
Dynamical Phenomena in Complex Networks: Fundamentals and Applications
Materials Science
Measurement Science and Instrumentation
Molecular
Neuroscience
Optical and Plasma Physics
Physics
Physics and Astronomy
Review
Synapses
title Building a model of the brain: from detailed connectivity maps to network organization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20model%20of%20the%20brain:%20from%20detailed%20connectivity%20maps%20to%20network%20organization&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Shimoura,%20Renan%20Oliveira&rft.date=2021-10-01&rft.volume=230&rft.issue=14-15&rft.spage=2887&rft.epage=2909&rft.pages=2887-2909&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-021-00152-7&rft_dat=%3Cproquest_hal_p%3E2596618768%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596618768&rft_id=info:pmid/&rfr_iscdi=true