Building a model of the brain: from detailed connectivity maps to network organization
The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological que...
Gespeichert in:
Veröffentlicht in: | The European physical journal. ST, Special topics Special topics, 2021-10, Vol.230 (14-15), p.2887-2909 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2909 |
---|---|
container_issue | 14-15 |
container_start_page | 2887 |
container_title | The European physical journal. ST, Special topics |
container_volume | 230 |
creator | Shimoura, Renan Oliveira Pena, Rodrigo F. O. Lima, Vinicius Kamiji, Nilton L. Girardi-Schappo, Mauricio Roque, Antonio C. |
description | The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them. |
doi_str_mv | 10.1140/epjs/s11734-021-00152-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03553445v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2596618768</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</originalsourceid><addsrcrecordid>eNqFkMFO3DAQhiNEpS6UZ6ilnnoIeOw4dnrbrlpAWolLy9XyJuNdL1k7tb0geHqypMCRk0fW9_-a-YriK9BzgIpe4LBNFwlA8qqkDEpKQbBSHhUzaASUdUXh-HXmQnwuTlLaUipq1vBZcftz7_rO-TUxZBc67EmwJG-QrKJx_gexMexIh9m4HjvSBu-xze7e5UeyM0MiORCP-SHEOxLi2nj3ZLIL_kvxyZo-4dn_97T4-_vXn8VVuby5vF7Ml2XLa5XLtmIKhVBg0AKiUpauZEUlSIa8FY1FAJQMpOC24syibVcMBHS0rWWjGn5afJ96N6bXQ3Q7Ex91ME5fzZf68EfHk3lViXsY2W8TO8Twb48p623YRz-up5lo6hqUrNVIyYlqY0gpon2rBaoPwvVBuJ6E61G4fhGu5ZhUUzKNCb_G-N7_UfQZ7_yGfw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2596618768</pqid></control><display><type>article</type><title>Building a model of the brain: from detailed connectivity maps to network organization</title><source>SpringerNature Journals</source><creator>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</creator><creatorcontrib>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</creatorcontrib><description>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</description><identifier>ISSN: 1951-6355</identifier><identifier>EISSN: 1951-6401</identifier><identifier>DOI: 10.1140/epjs/s11734-021-00152-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Atomic ; Brain ; Classical and Continuum Physics ; Cognitive science ; Condensed Matter Physics ; Connectivity ; Dynamical Phenomena in Complex Networks: Fundamentals and Applications ; Materials Science ; Measurement Science and Instrumentation ; Molecular ; Neuroscience ; Optical and Plasma Physics ; Physics ; Physics and Astronomy ; Review ; Synapses</subject><ispartof>The European physical journal. ST, Special topics, 2021-10, Vol.230 (14-15), p.2887-2909</ispartof><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</citedby><cites>FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</cites><orcidid>0000-0001-7115-9041 ; 0000-0002-9111-4905 ; 0000-0003-1260-4840 ; 0000-0002-6580-5999 ; 0000-0002-2037-9746 ; 0000-0001-5006-6612</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjs/s11734-021-00152-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjs/s11734-021-00152-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03553445$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Shimoura, Renan Oliveira</creatorcontrib><creatorcontrib>Pena, Rodrigo F. O.</creatorcontrib><creatorcontrib>Lima, Vinicius</creatorcontrib><creatorcontrib>Kamiji, Nilton L.</creatorcontrib><creatorcontrib>Girardi-Schappo, Mauricio</creatorcontrib><creatorcontrib>Roque, Antonio C.</creatorcontrib><title>Building a model of the brain: from detailed connectivity maps to network organization</title><title>The European physical journal. ST, Special topics</title><addtitle>Eur. Phys. J. Spec. Top</addtitle><description>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</description><subject>Atomic</subject><subject>Brain</subject><subject>Classical and Continuum Physics</subject><subject>Cognitive science</subject><subject>Condensed Matter Physics</subject><subject>Connectivity</subject><subject>Dynamical Phenomena in Complex Networks: Fundamentals and Applications</subject><subject>Materials Science</subject><subject>Measurement Science and Instrumentation</subject><subject>Molecular</subject><subject>Neuroscience</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Review</subject><subject>Synapses</subject><issn>1951-6355</issn><issn>1951-6401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqFkMFO3DAQhiNEpS6UZ6ilnnoIeOw4dnrbrlpAWolLy9XyJuNdL1k7tb0geHqypMCRk0fW9_-a-YriK9BzgIpe4LBNFwlA8qqkDEpKQbBSHhUzaASUdUXh-HXmQnwuTlLaUipq1vBZcftz7_rO-TUxZBc67EmwJG-QrKJx_gexMexIh9m4HjvSBu-xze7e5UeyM0MiORCP-SHEOxLi2nj3ZLIL_kvxyZo-4dn_97T4-_vXn8VVuby5vF7Ml2XLa5XLtmIKhVBg0AKiUpauZEUlSIa8FY1FAJQMpOC24syibVcMBHS0rWWjGn5afJ96N6bXQ3Q7Ex91ME5fzZf68EfHk3lViXsY2W8TO8Twb48p623YRz-up5lo6hqUrNVIyYlqY0gpon2rBaoPwvVBuJ6E61G4fhGu5ZhUUzKNCb_G-N7_UfQZ7_yGfw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Shimoura, Renan Oliveira</creator><creator>Pena, Rodrigo F. O.</creator><creator>Lima, Vinicius</creator><creator>Kamiji, Nilton L.</creator><creator>Girardi-Schappo, Mauricio</creator><creator>Roque, Antonio C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7115-9041</orcidid><orcidid>https://orcid.org/0000-0002-9111-4905</orcidid><orcidid>https://orcid.org/0000-0003-1260-4840</orcidid><orcidid>https://orcid.org/0000-0002-6580-5999</orcidid><orcidid>https://orcid.org/0000-0002-2037-9746</orcidid><orcidid>https://orcid.org/0000-0001-5006-6612</orcidid></search><sort><creationdate>20211001</creationdate><title>Building a model of the brain: from detailed connectivity maps to network organization</title><author>Shimoura, Renan Oliveira ; Pena, Rodrigo F. O. ; Lima, Vinicius ; Kamiji, Nilton L. ; Girardi-Schappo, Mauricio ; Roque, Antonio C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-c428e5581aef1ee88f0b7407172e3c59fe11e721753f432fefcb2151d0c679893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Atomic</topic><topic>Brain</topic><topic>Classical and Continuum Physics</topic><topic>Cognitive science</topic><topic>Condensed Matter Physics</topic><topic>Connectivity</topic><topic>Dynamical Phenomena in Complex Networks: Fundamentals and Applications</topic><topic>Materials Science</topic><topic>Measurement Science and Instrumentation</topic><topic>Molecular</topic><topic>Neuroscience</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Review</topic><topic>Synapses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shimoura, Renan Oliveira</creatorcontrib><creatorcontrib>Pena, Rodrigo F. O.</creatorcontrib><creatorcontrib>Lima, Vinicius</creatorcontrib><creatorcontrib>Kamiji, Nilton L.</creatorcontrib><creatorcontrib>Girardi-Schappo, Mauricio</creatorcontrib><creatorcontrib>Roque, Antonio C.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>The European physical journal. ST, Special topics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shimoura, Renan Oliveira</au><au>Pena, Rodrigo F. O.</au><au>Lima, Vinicius</au><au>Kamiji, Nilton L.</au><au>Girardi-Schappo, Mauricio</au><au>Roque, Antonio C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Building a model of the brain: from detailed connectivity maps to network organization</atitle><jtitle>The European physical journal. ST, Special topics</jtitle><stitle>Eur. Phys. J. Spec. Top</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>230</volume><issue>14-15</issue><spage>2887</spage><epage>2909</epage><pages>2887-2909</pages><issn>1951-6355</issn><eissn>1951-6401</eissn><abstract>The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers of neurons and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjs/s11734-021-00152-7</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-7115-9041</orcidid><orcidid>https://orcid.org/0000-0002-9111-4905</orcidid><orcidid>https://orcid.org/0000-0003-1260-4840</orcidid><orcidid>https://orcid.org/0000-0002-6580-5999</orcidid><orcidid>https://orcid.org/0000-0002-2037-9746</orcidid><orcidid>https://orcid.org/0000-0001-5006-6612</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1951-6355 |
ispartof | The European physical journal. ST, Special topics, 2021-10, Vol.230 (14-15), p.2887-2909 |
issn | 1951-6355 1951-6401 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03553445v1 |
source | SpringerNature Journals |
subjects | Atomic Brain Classical and Continuum Physics Cognitive science Condensed Matter Physics Connectivity Dynamical Phenomena in Complex Networks: Fundamentals and Applications Materials Science Measurement Science and Instrumentation Molecular Neuroscience Optical and Plasma Physics Physics Physics and Astronomy Review Synapses |
title | Building a model of the brain: from detailed connectivity maps to network organization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T23%3A49%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Building%20a%20model%20of%20the%20brain:%20from%20detailed%20connectivity%20maps%20to%20network%20organization&rft.jtitle=The%20European%20physical%20journal.%20ST,%20Special%20topics&rft.au=Shimoura,%20Renan%20Oliveira&rft.date=2021-10-01&rft.volume=230&rft.issue=14-15&rft.spage=2887&rft.epage=2909&rft.pages=2887-2909&rft.issn=1951-6355&rft.eissn=1951-6401&rft_id=info:doi/10.1140/epjs/s11734-021-00152-7&rft_dat=%3Cproquest_hal_p%3E2596618768%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2596618768&rft_id=info:pmid/&rfr_iscdi=true |