Evidence for Multiple Ferrel‐Like Cells on Jupiter

Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple ins...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2021-12, Vol.48 (23), p.n/a
Hauptverfasser: Duer, Keren, Gavriel, Nimrod, Galanti, Eli, Kaspi, Yohai, Fletcher, Leigh N., Guillot, Tristan, Bolton, Scott J., Levin, Steven M., Atreya, Sushil K., Grassi, Davide, Ingersoll, Andrew P., Li, Cheng, Li, Liming, Lunine, Jonathan I., Orton, Glenn S., Oyafuso, Fabiano A., Waite, J. Hunter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 23
container_start_page
container_title Geophysical research letters
container_volume 48
creator Duer, Keren
Gavriel, Nimrod
Galanti, Eli
Kaspi, Yohai
Fletcher, Leigh N.
Guillot, Tristan
Bolton, Scott J.
Levin, Steven M.
Atreya, Sushil K.
Grassi, Davide
Ingersoll, Andrew P.
Li, Cheng
Li, Liming
Lunine, Jonathan I.
Orton, Glenn S.
Oyafuso, Fabiano A.
Waite, J. Hunter
description Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno's microwave data between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$. The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long‐standing puzzle regarding the nature of Jupiter's subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere. Plain Language Summary The cloud layer of Jupiter is divided into dark and bright bands that are shaped by strong east‐west winds. Such winds in planetary atmospheres are thought to be tied with a meridional circulation. The Juno mission collected measurements of Jupiter's atmosphere at various wavelengths, which penetrate the cloud cover. Here, we provide evidence, using the Juno data, of eight deep Jovian circulation cells in each hemisphere encompassing the east‐west winds, gaining energy from atmospheric waves, and extending at least to a depth of hundreds of kilometers. Different than Earth, which has only one analogous cell in each hemisphere, known as a Ferrel cell, Jupiter can contain more cells due to its larger size and faster spin. To support the presented evidence, we modeled how ammonia gas would spread under the influence of such cells and compared it to the Juno measurements. The presented results shed light on the unseen flow structure beneath Jupiter's clouds. Key Points Measurements from multiple instruments of the Juno mission are interpreted to reveal the meridional circulation beneath Jupiter's clouds 16 Jet‐paired deep cells, extending from the cloud deck down to at least 240 bar, are revealed between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$, driven by turbulence similar to Earth's Ferrel cells The findings are supported by modeling the advection of tracers due
doi_str_mv 10.1029/2021GL095651
format Article
fullrecord <record><control><sourceid>wiley_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03551813v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>GRL63251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3121-fa606e825e513249c998e37841e0412d99cf474a1081dd4eebdc1e16e9222a303</originalsourceid><addsrcrecordid>eNp9kM1KA0EQhAdRMEZvPsBeBVe7e2Z_5hhCslFWBNHzMO724uiYDbNJJLc8gs_ok7ghIp48ddF8VRQlxDnCFQLpawLCogSdpAkeiAFqpeIcIDsUAwDda8rSY3HSda8AIEHiQKjJ2tU8rzhq2hDdrfzSLTxHUw6B_df2s3RvHI3Z-y5q59HtauGWHE7FUWN9x2c_dyieppPH8Swu74ub8aiMK4mEcWNTSDmnhBOUpHSldc4yyxUyKKRa66pRmbIIOda1Yn6uK2RMWROR7fsNxcU-98V6swju3YaNaa0zs1Fpdj-QSYI5yjX27OWerULbdYGbXwOC2a1j_q7T47THP5znzb-sKR7KVFJv-gZOymOo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Evidence for Multiple Ferrel‐Like Cells on Jupiter</title><source>Wiley Online Library Free Content</source><source>Access via Wiley Online Library</source><source>Wiley-Blackwell AGU Digital Library</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Duer, Keren ; Gavriel, Nimrod ; Galanti, Eli ; Kaspi, Yohai ; Fletcher, Leigh N. ; Guillot, Tristan ; Bolton, Scott J. ; Levin, Steven M. ; Atreya, Sushil K. ; Grassi, Davide ; Ingersoll, Andrew P. ; Li, Cheng ; Li, Liming ; Lunine, Jonathan I. ; Orton, Glenn S. ; Oyafuso, Fabiano A. ; Waite, J. Hunter</creator><creatorcontrib>Duer, Keren ; Gavriel, Nimrod ; Galanti, Eli ; Kaspi, Yohai ; Fletcher, Leigh N. ; Guillot, Tristan ; Bolton, Scott J. ; Levin, Steven M. ; Atreya, Sushil K. ; Grassi, Davide ; Ingersoll, Andrew P. ; Li, Cheng ; Li, Liming ; Lunine, Jonathan I. ; Orton, Glenn S. ; Oyafuso, Fabiano A. ; Waite, J. Hunter</creatorcontrib><description>Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno's microwave data between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$. The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long‐standing puzzle regarding the nature of Jupiter's subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere. Plain Language Summary The cloud layer of Jupiter is divided into dark and bright bands that are shaped by strong east‐west winds. Such winds in planetary atmospheres are thought to be tied with a meridional circulation. The Juno mission collected measurements of Jupiter's atmosphere at various wavelengths, which penetrate the cloud cover. Here, we provide evidence, using the Juno data, of eight deep Jovian circulation cells in each hemisphere encompassing the east‐west winds, gaining energy from atmospheric waves, and extending at least to a depth of hundreds of kilometers. Different than Earth, which has only one analogous cell in each hemisphere, known as a Ferrel cell, Jupiter can contain more cells due to its larger size and faster spin. To support the presented evidence, we modeled how ammonia gas would spread under the influence of such cells and compared it to the Juno measurements. The presented results shed light on the unseen flow structure beneath Jupiter's clouds. Key Points Measurements from multiple instruments of the Juno mission are interpreted to reveal the meridional circulation beneath Jupiter's clouds 16 Jet‐paired deep cells, extending from the cloud deck down to at least 240 bar, are revealed between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$, driven by turbulence similar to Earth's Ferrel cells The findings are supported by modeling the advection of tracers due to the cells, showing agreement with NH3 ${\mathrm{N}\mathrm{H}}_{3}$ data</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2021GL095651</identifier><language>eng</language><publisher>American Geophysical Union</publisher><subject>Astrophysics ; Earth and Planetary Astrophysics ; Ferrel cells ; Juno ; Jupiter ; meridional circulation cells ; Sciences of the Universe ; Solar and Stellar Astrophysics ; superrotation ; zonal jets</subject><ispartof>Geophysical research letters, 2021-12, Vol.48 (23), p.n/a</ispartof><rights>2021. American Geophysical Union. All Rights Reserved.</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3121-fa606e825e513249c998e37841e0412d99cf474a1081dd4eebdc1e16e9222a303</citedby><cites>FETCH-LOGICAL-c3121-fa606e825e513249c998e37841e0412d99cf474a1081dd4eebdc1e16e9222a303</cites><orcidid>0000-0002-3645-0383 ; 0000-0002-8862-8737 ; 0000-0003-4089-0020 ; 0000-0002-9115-0789 ; 0000-0003-1653-3066 ; 0000-0002-5440-8779 ; 0000-0003-2279-4131 ; 0000-0003-4428-2700 ; 0000-0001-7871-2823 ; 0000-0002-7188-8428 ; 0000-0003-2242-5459 ; 0000-0002-5257-9849 ; 0000-0002-1972-1815 ; 0000-0001-5834-9588 ; 0000-0002-2035-9198 ; 0000-0002-8280-3119 ; 0000-0002-1978-1025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2021GL095651$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2021GL095651$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03551813$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Duer, Keren</creatorcontrib><creatorcontrib>Gavriel, Nimrod</creatorcontrib><creatorcontrib>Galanti, Eli</creatorcontrib><creatorcontrib>Kaspi, Yohai</creatorcontrib><creatorcontrib>Fletcher, Leigh N.</creatorcontrib><creatorcontrib>Guillot, Tristan</creatorcontrib><creatorcontrib>Bolton, Scott J.</creatorcontrib><creatorcontrib>Levin, Steven M.</creatorcontrib><creatorcontrib>Atreya, Sushil K.</creatorcontrib><creatorcontrib>Grassi, Davide</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Oyafuso, Fabiano A.</creatorcontrib><creatorcontrib>Waite, J. Hunter</creatorcontrib><title>Evidence for Multiple Ferrel‐Like Cells on Jupiter</title><title>Geophysical research letters</title><description>Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno's microwave data between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$. The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long‐standing puzzle regarding the nature of Jupiter's subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere. Plain Language Summary The cloud layer of Jupiter is divided into dark and bright bands that are shaped by strong east‐west winds. Such winds in planetary atmospheres are thought to be tied with a meridional circulation. The Juno mission collected measurements of Jupiter's atmosphere at various wavelengths, which penetrate the cloud cover. Here, we provide evidence, using the Juno data, of eight deep Jovian circulation cells in each hemisphere encompassing the east‐west winds, gaining energy from atmospheric waves, and extending at least to a depth of hundreds of kilometers. Different than Earth, which has only one analogous cell in each hemisphere, known as a Ferrel cell, Jupiter can contain more cells due to its larger size and faster spin. To support the presented evidence, we modeled how ammonia gas would spread under the influence of such cells and compared it to the Juno measurements. The presented results shed light on the unseen flow structure beneath Jupiter's clouds. Key Points Measurements from multiple instruments of the Juno mission are interpreted to reveal the meridional circulation beneath Jupiter's clouds 16 Jet‐paired deep cells, extending from the cloud deck down to at least 240 bar, are revealed between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$, driven by turbulence similar to Earth's Ferrel cells The findings are supported by modeling the advection of tracers due to the cells, showing agreement with NH3 ${\mathrm{N}\mathrm{H}}_{3}$ data</description><subject>Astrophysics</subject><subject>Earth and Planetary Astrophysics</subject><subject>Ferrel cells</subject><subject>Juno</subject><subject>Jupiter</subject><subject>meridional circulation cells</subject><subject>Sciences of the Universe</subject><subject>Solar and Stellar Astrophysics</subject><subject>superrotation</subject><subject>zonal jets</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KA0EQhAdRMEZvPsBeBVe7e2Z_5hhCslFWBNHzMO724uiYDbNJJLc8gs_ok7ghIp48ddF8VRQlxDnCFQLpawLCogSdpAkeiAFqpeIcIDsUAwDda8rSY3HSda8AIEHiQKjJ2tU8rzhq2hDdrfzSLTxHUw6B_df2s3RvHI3Z-y5q59HtauGWHE7FUWN9x2c_dyieppPH8Swu74ub8aiMK4mEcWNTSDmnhBOUpHSldc4yyxUyKKRa66pRmbIIOda1Yn6uK2RMWROR7fsNxcU-98V6swju3YaNaa0zs1Fpdj-QSYI5yjX27OWerULbdYGbXwOC2a1j_q7T47THP5znzb-sKR7KVFJv-gZOymOo</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Duer, Keren</creator><creator>Gavriel, Nimrod</creator><creator>Galanti, Eli</creator><creator>Kaspi, Yohai</creator><creator>Fletcher, Leigh N.</creator><creator>Guillot, Tristan</creator><creator>Bolton, Scott J.</creator><creator>Levin, Steven M.</creator><creator>Atreya, Sushil K.</creator><creator>Grassi, Davide</creator><creator>Ingersoll, Andrew P.</creator><creator>Li, Cheng</creator><creator>Li, Liming</creator><creator>Lunine, Jonathan I.</creator><creator>Orton, Glenn S.</creator><creator>Oyafuso, Fabiano A.</creator><creator>Waite, J. Hunter</creator><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3645-0383</orcidid><orcidid>https://orcid.org/0000-0002-8862-8737</orcidid><orcidid>https://orcid.org/0000-0003-4089-0020</orcidid><orcidid>https://orcid.org/0000-0002-9115-0789</orcidid><orcidid>https://orcid.org/0000-0003-1653-3066</orcidid><orcidid>https://orcid.org/0000-0002-5440-8779</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid><orcidid>https://orcid.org/0000-0003-4428-2700</orcidid><orcidid>https://orcid.org/0000-0001-7871-2823</orcidid><orcidid>https://orcid.org/0000-0002-7188-8428</orcidid><orcidid>https://orcid.org/0000-0003-2242-5459</orcidid><orcidid>https://orcid.org/0000-0002-5257-9849</orcidid><orcidid>https://orcid.org/0000-0002-1972-1815</orcidid><orcidid>https://orcid.org/0000-0001-5834-9588</orcidid><orcidid>https://orcid.org/0000-0002-2035-9198</orcidid><orcidid>https://orcid.org/0000-0002-8280-3119</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid></search><sort><creationdate>20211216</creationdate><title>Evidence for Multiple Ferrel‐Like Cells on Jupiter</title><author>Duer, Keren ; Gavriel, Nimrod ; Galanti, Eli ; Kaspi, Yohai ; Fletcher, Leigh N. ; Guillot, Tristan ; Bolton, Scott J. ; Levin, Steven M. ; Atreya, Sushil K. ; Grassi, Davide ; Ingersoll, Andrew P. ; Li, Cheng ; Li, Liming ; Lunine, Jonathan I. ; Orton, Glenn S. ; Oyafuso, Fabiano A. ; Waite, J. Hunter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3121-fa606e825e513249c998e37841e0412d99cf474a1081dd4eebdc1e16e9222a303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Earth and Planetary Astrophysics</topic><topic>Ferrel cells</topic><topic>Juno</topic><topic>Jupiter</topic><topic>meridional circulation cells</topic><topic>Sciences of the Universe</topic><topic>Solar and Stellar Astrophysics</topic><topic>superrotation</topic><topic>zonal jets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duer, Keren</creatorcontrib><creatorcontrib>Gavriel, Nimrod</creatorcontrib><creatorcontrib>Galanti, Eli</creatorcontrib><creatorcontrib>Kaspi, Yohai</creatorcontrib><creatorcontrib>Fletcher, Leigh N.</creatorcontrib><creatorcontrib>Guillot, Tristan</creatorcontrib><creatorcontrib>Bolton, Scott J.</creatorcontrib><creatorcontrib>Levin, Steven M.</creatorcontrib><creatorcontrib>Atreya, Sushil K.</creatorcontrib><creatorcontrib>Grassi, Davide</creatorcontrib><creatorcontrib>Ingersoll, Andrew P.</creatorcontrib><creatorcontrib>Li, Cheng</creatorcontrib><creatorcontrib>Li, Liming</creatorcontrib><creatorcontrib>Lunine, Jonathan I.</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Oyafuso, Fabiano A.</creatorcontrib><creatorcontrib>Waite, J. Hunter</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duer, Keren</au><au>Gavriel, Nimrod</au><au>Galanti, Eli</au><au>Kaspi, Yohai</au><au>Fletcher, Leigh N.</au><au>Guillot, Tristan</au><au>Bolton, Scott J.</au><au>Levin, Steven M.</au><au>Atreya, Sushil K.</au><au>Grassi, Davide</au><au>Ingersoll, Andrew P.</au><au>Li, Cheng</au><au>Li, Liming</au><au>Lunine, Jonathan I.</au><au>Orton, Glenn S.</au><au>Oyafuso, Fabiano A.</au><au>Waite, J. Hunter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evidence for Multiple Ferrel‐Like Cells on Jupiter</atitle><jtitle>Geophysical research letters</jtitle><date>2021-12-16</date><risdate>2021</risdate><volume>48</volume><issue>23</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Jupiter's atmosphere is dominated by multiple jet streams which are strongly tied to its 3D atmospheric circulation. Lacking a rigid bottom boundary, several models exist for how the meridional circulation extends into the planetary interior. Here, we show, collecting evidence from multiple instruments of the Juno mission, the existence of midlatitudinal meridional circulation cells which are driven by turbulence, similar to the Ferrel cells on Earth. Different than Earth, which contains only one such cell in each hemisphere, the larger, faster rotating Jupiter can incorporate multiple cells. The cells form regions of upwelling and downwelling, which we show are clearly evident in Juno's microwave data between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$. The existence of these cells is confirmed by reproducing the ammonia observations using a simplistic model. This study solves a long‐standing puzzle regarding the nature of Jupiter's subcloud dynamics and provides evidence for eight cells in each Jovian hemisphere. Plain Language Summary The cloud layer of Jupiter is divided into dark and bright bands that are shaped by strong east‐west winds. Such winds in planetary atmospheres are thought to be tied with a meridional circulation. The Juno mission collected measurements of Jupiter's atmosphere at various wavelengths, which penetrate the cloud cover. Here, we provide evidence, using the Juno data, of eight deep Jovian circulation cells in each hemisphere encompassing the east‐west winds, gaining energy from atmospheric waves, and extending at least to a depth of hundreds of kilometers. Different than Earth, which has only one analogous cell in each hemisphere, known as a Ferrel cell, Jupiter can contain more cells due to its larger size and faster spin. To support the presented evidence, we modeled how ammonia gas would spread under the influence of such cells and compared it to the Juno measurements. The presented results shed light on the unseen flow structure beneath Jupiter's clouds. Key Points Measurements from multiple instruments of the Juno mission are interpreted to reveal the meridional circulation beneath Jupiter's clouds 16 Jet‐paired deep cells, extending from the cloud deck down to at least 240 bar, are revealed between latitudes 60°S $60{}^{\circ}\mathrm{S}$ and 60°N $60{}^{\circ}\mathrm{N}$, driven by turbulence similar to Earth's Ferrel cells The findings are supported by modeling the advection of tracers due to the cells, showing agreement with NH3 ${\mathrm{N}\mathrm{H}}_{3}$ data</abstract><pub>American Geophysical Union</pub><doi>10.1029/2021GL095651</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3645-0383</orcidid><orcidid>https://orcid.org/0000-0002-8862-8737</orcidid><orcidid>https://orcid.org/0000-0003-4089-0020</orcidid><orcidid>https://orcid.org/0000-0002-9115-0789</orcidid><orcidid>https://orcid.org/0000-0003-1653-3066</orcidid><orcidid>https://orcid.org/0000-0002-5440-8779</orcidid><orcidid>https://orcid.org/0000-0003-2279-4131</orcidid><orcidid>https://orcid.org/0000-0003-4428-2700</orcidid><orcidid>https://orcid.org/0000-0001-7871-2823</orcidid><orcidid>https://orcid.org/0000-0002-7188-8428</orcidid><orcidid>https://orcid.org/0000-0003-2242-5459</orcidid><orcidid>https://orcid.org/0000-0002-5257-9849</orcidid><orcidid>https://orcid.org/0000-0002-1972-1815</orcidid><orcidid>https://orcid.org/0000-0001-5834-9588</orcidid><orcidid>https://orcid.org/0000-0002-2035-9198</orcidid><orcidid>https://orcid.org/0000-0002-8280-3119</orcidid><orcidid>https://orcid.org/0000-0002-1978-1025</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2021-12, Vol.48 (23), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_hal_03551813v1
source Wiley Online Library Free Content; Access via Wiley Online Library; Wiley-Blackwell AGU Digital Library; EZB-FREE-00999 freely available EZB journals
subjects Astrophysics
Earth and Planetary Astrophysics
Ferrel cells
Juno
Jupiter
meridional circulation cells
Sciences of the Universe
Solar and Stellar Astrophysics
superrotation
zonal jets
title Evidence for Multiple Ferrel‐Like Cells on Jupiter
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evidence%20for%20Multiple%20Ferrel%E2%80%90Like%20Cells%20on%20Jupiter&rft.jtitle=Geophysical%20research%20letters&rft.au=Duer,%20Keren&rft.date=2021-12-16&rft.volume=48&rft.issue=23&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2021GL095651&rft_dat=%3Cwiley_hal_p%3EGRL63251%3C/wiley_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true