Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology

Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy conversion and management 2010-04, Vol.51 (4), p.859-871
Hauptverfasser: Gomez, Adrien, Pibouleau, Luc, Azzaro-Pantel, Catherine, Domenech, Serge, Latgé, Christian, Haubensack, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 871
container_issue 4
container_start_page 859
container_title Energy conversion and management
container_volume 51
creator Gomez, Adrien
Pibouleau, Luc
Azzaro-Pantel, Catherine
Domenech, Serge
Latgé, Christian
Haubensack, David
description Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules.
doi_str_mv 10.1016/j.enconman.2009.11.022
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03549569v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0196890409004671</els_id><sourcerecordid>1777149616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-fbd18e31b2a8196c083cf0b4ca514f59c75b3b86798ab543f27011e66316d693</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EEsu2fwHlgoBDUo-TOPaNqoK20iIuVa-W40x2vXLiYjsr7b_Hy7Y9wmnk0fdm3vgR8hFoBRT41b7C2fh50nPFKJUVQEUZe0NWIDpZMsa6t2RFQfJSSNq8Jx9i3FNK65byFXE_F5es7_dokj1gscUZkzWFdlsfbNpNRUxBJ9xajMXoQ4Euk8Eam47FU_DDknV-Lsbgp7_iDJ_e94_FvBiHOhQJzW72zm-PF-TdqF3Ey-e6Jg8_vj_c3JWbX7f3N9eb0jRCpnLsBxBYQ8-0yLYNFbUZad8Y3UIzttJ0bV_3gndS6L5t6pF1FAA5r4EPXNZr8vU8dqedegp20uGovLbq7nqjTr18eyNbLg-Q2c9nNt_ye8GY1GSjQef0jH6JSgjZAJPZwpp8-ScJXddBIznwjPIzaoKPMeD46gKoOmWm9uolM3XKTAGonFkWfnreoaPRbgx6Nja-qhlrgTeSZu7bmcP8iweLQUVj80QcbMjxqMHb_636A_qMsVg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777149616</pqid></control><display><type>article</type><title>Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology</title><source>Elsevier ScienceDirect Journals</source><creator>Gomez, Adrien ; Pibouleau, Luc ; Azzaro-Pantel, Catherine ; Domenech, Serge ; Latgé, Christian ; Haubensack, David</creator><creatorcontrib>Gomez, Adrien ; Pibouleau, Luc ; Azzaro-Pantel, Catherine ; Domenech, Serge ; Latgé, Christian ; Haubensack, David</creatorcontrib><description>Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules.</description><identifier>ISSN: 0196-8904</identifier><identifier>EISSN: 1879-2227</identifier><identifier>DOI: 10.1016/j.enconman.2009.11.022</identifier><identifier>CODEN: ECMADL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Alternative fuels. Production and utilization ; Applied sciences ; Chemical and Process Engineering ; Chemical engineering ; Chemical Sciences ; Cogeneration ; Cogeneration electricity/hydrogen ; Criteria ; Destruction ; Economic data ; Electric energy ; Electricity ; Energy ; Energy economics ; Energy. Thermal use of fuels ; Engineering Sciences ; Exact sciences and technology ; Exergy ; Fission nuclear power plants ; Fuels ; General, economic and professional studies ; Genetic algorithm ; Hydrogen ; Installations for energy generation and conversion: thermal and electrical energy ; Mathematical analysis ; Mathematical models ; Multiobjective optimization ; Nuclear technology ; Optimization</subject><ispartof>Energy conversion and management, 2010-04, Vol.51 (4), p.859-871</ispartof><rights>2009 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-fbd18e31b2a8196c083cf0b4ca514f59c75b3b86798ab543f27011e66316d693</citedby><cites>FETCH-LOGICAL-c489t-fbd18e31b2a8196c083cf0b4ca514f59c75b3b86798ab543f27011e66316d693</cites><orcidid>0000-0001-5832-5199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0196890409004671$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22516490$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03549569$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gomez, Adrien</creatorcontrib><creatorcontrib>Pibouleau, Luc</creatorcontrib><creatorcontrib>Azzaro-Pantel, Catherine</creatorcontrib><creatorcontrib>Domenech, Serge</creatorcontrib><creatorcontrib>Latgé, Christian</creatorcontrib><creatorcontrib>Haubensack, David</creatorcontrib><title>Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology</title><title>Energy conversion and management</title><description>Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules.</description><subject>Alternative fuels. Production and utilization</subject><subject>Applied sciences</subject><subject>Chemical and Process Engineering</subject><subject>Chemical engineering</subject><subject>Chemical Sciences</subject><subject>Cogeneration</subject><subject>Cogeneration electricity/hydrogen</subject><subject>Criteria</subject><subject>Destruction</subject><subject>Economic data</subject><subject>Electric energy</subject><subject>Electricity</subject><subject>Energy</subject><subject>Energy economics</subject><subject>Energy. Thermal use of fuels</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Exergy</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>General, economic and professional studies</subject><subject>Genetic algorithm</subject><subject>Hydrogen</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Multiobjective optimization</subject><subject>Nuclear technology</subject><subject>Optimization</subject><issn>0196-8904</issn><issn>1879-2227</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EEsu2fwHlgoBDUo-TOPaNqoK20iIuVa-W40x2vXLiYjsr7b_Hy7Y9wmnk0fdm3vgR8hFoBRT41b7C2fh50nPFKJUVQEUZe0NWIDpZMsa6t2RFQfJSSNq8Jx9i3FNK65byFXE_F5es7_dokj1gscUZkzWFdlsfbNpNRUxBJ9xajMXoQ4Euk8Eam47FU_DDknV-Lsbgp7_iDJ_e94_FvBiHOhQJzW72zm-PF-TdqF3Ey-e6Jg8_vj_c3JWbX7f3N9eb0jRCpnLsBxBYQ8-0yLYNFbUZad8Y3UIzttJ0bV_3gndS6L5t6pF1FAA5r4EPXNZr8vU8dqedegp20uGovLbq7nqjTr18eyNbLg-Q2c9nNt_ye8GY1GSjQef0jH6JSgjZAJPZwpp8-ScJXddBIznwjPIzaoKPMeD46gKoOmWm9uolM3XKTAGonFkWfnreoaPRbgx6Nja-qhlrgTeSZu7bmcP8iweLQUVj80QcbMjxqMHb_636A_qMsVg</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Gomez, Adrien</creator><creator>Pibouleau, Luc</creator><creator>Azzaro-Pantel, Catherine</creator><creator>Domenech, Serge</creator><creator>Latgé, Christian</creator><creator>Haubensack, David</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>7ST</scope><scope>SOI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5832-5199</orcidid></search><sort><creationdate>20100401</creationdate><title>Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology</title><author>Gomez, Adrien ; Pibouleau, Luc ; Azzaro-Pantel, Catherine ; Domenech, Serge ; Latgé, Christian ; Haubensack, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-fbd18e31b2a8196c083cf0b4ca514f59c75b3b86798ab543f27011e66316d693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Alternative fuels. Production and utilization</topic><topic>Applied sciences</topic><topic>Chemical and Process Engineering</topic><topic>Chemical engineering</topic><topic>Chemical Sciences</topic><topic>Cogeneration</topic><topic>Cogeneration electricity/hydrogen</topic><topic>Criteria</topic><topic>Destruction</topic><topic>Economic data</topic><topic>Electric energy</topic><topic>Electricity</topic><topic>Energy</topic><topic>Energy economics</topic><topic>Energy. Thermal use of fuels</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Exergy</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>General, economic and professional studies</topic><topic>Genetic algorithm</topic><topic>Hydrogen</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Multiobjective optimization</topic><topic>Nuclear technology</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomez, Adrien</creatorcontrib><creatorcontrib>Pibouleau, Luc</creatorcontrib><creatorcontrib>Azzaro-Pantel, Catherine</creatorcontrib><creatorcontrib>Domenech, Serge</creatorcontrib><creatorcontrib>Latgé, Christian</creatorcontrib><creatorcontrib>Haubensack, David</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Energy conversion and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomez, Adrien</au><au>Pibouleau, Luc</au><au>Azzaro-Pantel, Catherine</au><au>Domenech, Serge</au><au>Latgé, Christian</au><au>Haubensack, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology</atitle><jtitle>Energy conversion and management</jtitle><date>2010-04-01</date><risdate>2010</risdate><volume>51</volume><issue>4</issue><spage>859</spage><epage>871</epage><pages>859-871</pages><issn>0196-8904</issn><eissn>1879-2227</eissn><coden>ECMADL</coden><abstract>Development of a technico-economic optimization strategy of cogeneration systems of electricity/hydrogen, consists in finding an optimal efficiency of the generating cycle and heat delivery system, maximizing the energy production and minimizing the production costs. The first part of the paper is related to the development of a multiobjective optimization library (MULTIGEN) to tackle all types of problems arising from cogeneration. After a literature review for identifying the most efficient methods, the MULTIGEN library is described, and the innovative points are listed. A new stopping criterion, based on the stagnation of the Pareto front, may lead to significant decrease of computational times, particularly in the case of problems involving only integer variables. Two practical examples are presented in the last section. The former is devoted to a bicriteria optimization of both exergy destruction and total cost of the plant, for a generating cycle coupled with a Very High Temperature Reactor (VHTR). The second example consists in designing the heat exchanger of the generating turbomachine. Three criteria are optimized: the exchange surface, the exergy destruction and the number of exchange modules.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.enconman.2009.11.022</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5832-5199</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0196-8904
ispartof Energy conversion and management, 2010-04, Vol.51 (4), p.859-871
issn 0196-8904
1879-2227
language eng
recordid cdi_hal_primary_oai_HAL_hal_03549569v1
source Elsevier ScienceDirect Journals
subjects Alternative fuels. Production and utilization
Applied sciences
Chemical and Process Engineering
Chemical engineering
Chemical Sciences
Cogeneration
Cogeneration electricity/hydrogen
Criteria
Destruction
Economic data
Electric energy
Electricity
Energy
Energy economics
Energy. Thermal use of fuels
Engineering Sciences
Exact sciences and technology
Exergy
Fission nuclear power plants
Fuels
General, economic and professional studies
Genetic algorithm
Hydrogen
Installations for energy generation and conversion: thermal and electrical energy
Mathematical analysis
Mathematical models
Multiobjective optimization
Nuclear technology
Optimization
title Multiobjective genetic algorithm strategies for electricity production from generation IV nuclear technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A42%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiobjective%20genetic%20algorithm%20strategies%20for%20electricity%20production%20from%20generation%20IV%20nuclear%20technology&rft.jtitle=Energy%20conversion%20and%20management&rft.au=Gomez,%20Adrien&rft.date=2010-04-01&rft.volume=51&rft.issue=4&rft.spage=859&rft.epage=871&rft.pages=859-871&rft.issn=0196-8904&rft.eissn=1879-2227&rft.coden=ECMADL&rft_id=info:doi/10.1016/j.enconman.2009.11.022&rft_dat=%3Cproquest_hal_p%3E1777149616%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1777149616&rft_id=info:pmid/&rft_els_id=S0196890409004671&rfr_iscdi=true