Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves
The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibratio...
Gespeichert in:
Veröffentlicht in: | Physical review applied 2021-11, Vol.16 (5), Article 054024 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | |
container_title | Physical review applied |
container_volume | 16 |
creator | Benchabane, Sarah Jallouli, Aymen Raguin, Laetitia Gaiffe, Olivier Chatellier, Jules Soumann, Valérie Cote, Jean-Marc Salut, Roland Khelif, Abdelkrim |
description | The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies. |
doi_str_mv | 10.1103/PhysRevApplied.16.054024 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03549399v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03549399v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</originalsourceid><addsrcrecordid>eNpVkE1LAzEURYMoWGr_Q7Yupr5MkiZZDkVtsWipisuQyYcdGScl6RT679tSEV3dx-W8uzgIYQJjQoDeLdf7vPK7arNpG-_GZDIGzqBkF2hQUkoKAURd_rmv0SjnLwAgpOQgYYCenmPXNp03CU9jf5zpPnEMeLmOXewai1c-x85sY8p43rneeofrPX7tUzDW48rGPm-P2IfZ-XyDroJpsx_95BC9P9y_TWfF4uVxPq0WhaWMbgvreEnDxDMlpZA1BS4dNRKU91yEwE3Na6HK2jhbc6G4U9ayknLhIUgmBB2i2_Pu2rR6k5pvk_Y6mkbPqoU-dUA5U1SpHTmy8szaFHNOPvw-ENAnh_q_Q00m-uyQHgAAHGjd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><source>American Physical Society Journals</source><creator>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</creator><creatorcontrib>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</creatorcontrib><description>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.16.054024</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Acoustics ; Engineering Sciences ; Materials ; Micro and nanotechnologies ; Microelectronics ; Optics ; Other ; Physics</subject><ispartof>Physical review applied, 2021-11, Vol.16 (5), Article 054024</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</citedby><cites>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</cites><orcidid>0000-0003-3372-7057 ; 0000-0001-9376-2108 ; 0000-0003-3372-705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03549399$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benchabane, Sarah</creatorcontrib><creatorcontrib>Jallouli, Aymen</creatorcontrib><creatorcontrib>Raguin, Laetitia</creatorcontrib><creatorcontrib>Gaiffe, Olivier</creatorcontrib><creatorcontrib>Chatellier, Jules</creatorcontrib><creatorcontrib>Soumann, Valérie</creatorcontrib><creatorcontrib>Cote, Jean-Marc</creatorcontrib><creatorcontrib>Salut, Roland</creatorcontrib><creatorcontrib>Khelif, Abdelkrim</creatorcontrib><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><title>Physical review applied</title><description>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Other</subject><subject>Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEURYMoWGr_Q7Yupr5MkiZZDkVtsWipisuQyYcdGScl6RT679tSEV3dx-W8uzgIYQJjQoDeLdf7vPK7arNpG-_GZDIGzqBkF2hQUkoKAURd_rmv0SjnLwAgpOQgYYCenmPXNp03CU9jf5zpPnEMeLmOXewai1c-x85sY8p43rneeofrPX7tUzDW48rGPm-P2IfZ-XyDroJpsx_95BC9P9y_TWfF4uVxPq0WhaWMbgvreEnDxDMlpZA1BS4dNRKU91yEwE3Na6HK2jhbc6G4U9ayknLhIUgmBB2i2_Pu2rR6k5pvk_Y6mkbPqoU-dUA5U1SpHTmy8szaFHNOPvw-ENAnh_q_Q00m-uyQHgAAHGjd</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Benchabane, Sarah</creator><creator>Jallouli, Aymen</creator><creator>Raguin, Laetitia</creator><creator>Gaiffe, Olivier</creator><creator>Chatellier, Jules</creator><creator>Soumann, Valérie</creator><creator>Cote, Jean-Marc</creator><creator>Salut, Roland</creator><creator>Khelif, Abdelkrim</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3372-7057</orcidid><orcidid>https://orcid.org/0000-0001-9376-2108</orcidid><orcidid>https://orcid.org/0000-0003-3372-705</orcidid></search><sort><creationdate>20211101</creationdate><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><author>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benchabane, Sarah</creatorcontrib><creatorcontrib>Jallouli, Aymen</creatorcontrib><creatorcontrib>Raguin, Laetitia</creatorcontrib><creatorcontrib>Gaiffe, Olivier</creatorcontrib><creatorcontrib>Chatellier, Jules</creatorcontrib><creatorcontrib>Soumann, Valérie</creatorcontrib><creatorcontrib>Cote, Jean-Marc</creatorcontrib><creatorcontrib>Salut, Roland</creatorcontrib><creatorcontrib>Khelif, Abdelkrim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benchabane, Sarah</au><au>Jallouli, Aymen</au><au>Raguin, Laetitia</au><au>Gaiffe, Olivier</au><au>Chatellier, Jules</au><au>Soumann, Valérie</au><au>Cote, Jean-Marc</au><au>Salut, Roland</au><au>Khelif, Abdelkrim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</atitle><jtitle>Physical review applied</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><artnum>054024</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.16.054024</doi><orcidid>https://orcid.org/0000-0003-3372-7057</orcidid><orcidid>https://orcid.org/0000-0001-9376-2108</orcidid><orcidid>https://orcid.org/0000-0003-3372-705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2331-7019 |
ispartof | Physical review applied, 2021-11, Vol.16 (5), Article 054024 |
issn | 2331-7019 2331-7019 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_03549399v1 |
source | American Physical Society Journals |
subjects | Acoustics Engineering Sciences Materials Micro and nanotechnologies Microelectronics Optics Other Physics |
title | Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Coupling%20of%20Phononic%20Resonators%20Induced%20by%20Surface%20Acoustic%20Waves&rft.jtitle=Physical%20review%20applied&rft.au=Benchabane,%20Sarah&rft.date=2021-11-01&rft.volume=16&rft.issue=5&rft.artnum=054024&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.16.054024&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03549399v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |