Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves

The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibratio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review applied 2021-11, Vol.16 (5), Article 054024
Hauptverfasser: Benchabane, Sarah, Jallouli, Aymen, Raguin, Laetitia, Gaiffe, Olivier, Chatellier, Jules, Soumann, Valérie, Cote, Jean-Marc, Salut, Roland, Khelif, Abdelkrim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page
container_title Physical review applied
container_volume 16
creator Benchabane, Sarah
Jallouli, Aymen
Raguin, Laetitia
Gaiffe, Olivier
Chatellier, Jules
Soumann, Valérie
Cote, Jean-Marc
Salut, Roland
Khelif, Abdelkrim
description The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.
doi_str_mv 10.1103/PhysRevApplied.16.054024
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_03549399v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_03549399v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</originalsourceid><addsrcrecordid>eNpVkE1LAzEURYMoWGr_Q7Yupr5MkiZZDkVtsWipisuQyYcdGScl6RT679tSEV3dx-W8uzgIYQJjQoDeLdf7vPK7arNpG-_GZDIGzqBkF2hQUkoKAURd_rmv0SjnLwAgpOQgYYCenmPXNp03CU9jf5zpPnEMeLmOXewai1c-x85sY8p43rneeofrPX7tUzDW48rGPm-P2IfZ-XyDroJpsx_95BC9P9y_TWfF4uVxPq0WhaWMbgvreEnDxDMlpZA1BS4dNRKU91yEwE3Na6HK2jhbc6G4U9ayknLhIUgmBB2i2_Pu2rR6k5pvk_Y6mkbPqoU-dUA5U1SpHTmy8szaFHNOPvw-ENAnh_q_Q00m-uyQHgAAHGjd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><source>American Physical Society Journals</source><creator>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</creator><creatorcontrib>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</creatorcontrib><description>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</description><identifier>ISSN: 2331-7019</identifier><identifier>EISSN: 2331-7019</identifier><identifier>DOI: 10.1103/PhysRevApplied.16.054024</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Acoustics ; Engineering Sciences ; Materials ; Micro and nanotechnologies ; Microelectronics ; Optics ; Other ; Physics</subject><ispartof>Physical review applied, 2021-11, Vol.16 (5), Article 054024</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</citedby><cites>FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</cites><orcidid>0000-0003-3372-7057 ; 0000-0001-9376-2108 ; 0000-0003-3372-705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03549399$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Benchabane, Sarah</creatorcontrib><creatorcontrib>Jallouli, Aymen</creatorcontrib><creatorcontrib>Raguin, Laetitia</creatorcontrib><creatorcontrib>Gaiffe, Olivier</creatorcontrib><creatorcontrib>Chatellier, Jules</creatorcontrib><creatorcontrib>Soumann, Valérie</creatorcontrib><creatorcontrib>Cote, Jean-Marc</creatorcontrib><creatorcontrib>Salut, Roland</creatorcontrib><creatorcontrib>Khelif, Abdelkrim</creatorcontrib><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><title>Physical review applied</title><description>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</description><subject>Acoustics</subject><subject>Engineering Sciences</subject><subject>Materials</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>Other</subject><subject>Physics</subject><issn>2331-7019</issn><issn>2331-7019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LAzEURYMoWGr_Q7Yupr5MkiZZDkVtsWipisuQyYcdGScl6RT679tSEV3dx-W8uzgIYQJjQoDeLdf7vPK7arNpG-_GZDIGzqBkF2hQUkoKAURd_rmv0SjnLwAgpOQgYYCenmPXNp03CU9jf5zpPnEMeLmOXewai1c-x85sY8p43rneeofrPX7tUzDW48rGPm-P2IfZ-XyDroJpsx_95BC9P9y_TWfF4uVxPq0WhaWMbgvreEnDxDMlpZA1BS4dNRKU91yEwE3Na6HK2jhbc6G4U9ayknLhIUgmBB2i2_Pu2rR6k5pvk_Y6mkbPqoU-dUA5U1SpHTmy8szaFHNOPvw-ENAnh_q_Q00m-uyQHgAAHGjd</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Benchabane, Sarah</creator><creator>Jallouli, Aymen</creator><creator>Raguin, Laetitia</creator><creator>Gaiffe, Olivier</creator><creator>Chatellier, Jules</creator><creator>Soumann, Valérie</creator><creator>Cote, Jean-Marc</creator><creator>Salut, Roland</creator><creator>Khelif, Abdelkrim</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3372-7057</orcidid><orcidid>https://orcid.org/0000-0001-9376-2108</orcidid><orcidid>https://orcid.org/0000-0003-3372-705</orcidid></search><sort><creationdate>20211101</creationdate><title>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</title><author>Benchabane, Sarah ; Jallouli, Aymen ; Raguin, Laetitia ; Gaiffe, Olivier ; Chatellier, Jules ; Soumann, Valérie ; Cote, Jean-Marc ; Salut, Roland ; Khelif, Abdelkrim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-cd523f6e498878b3058d3a809ee57ff5ab5b792badcb5795d9cc42357e0f84773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acoustics</topic><topic>Engineering Sciences</topic><topic>Materials</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>Other</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Benchabane, Sarah</creatorcontrib><creatorcontrib>Jallouli, Aymen</creatorcontrib><creatorcontrib>Raguin, Laetitia</creatorcontrib><creatorcontrib>Gaiffe, Olivier</creatorcontrib><creatorcontrib>Chatellier, Jules</creatorcontrib><creatorcontrib>Soumann, Valérie</creatorcontrib><creatorcontrib>Cote, Jean-Marc</creatorcontrib><creatorcontrib>Salut, Roland</creatorcontrib><creatorcontrib>Khelif, Abdelkrim</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review applied</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Benchabane, Sarah</au><au>Jallouli, Aymen</au><au>Raguin, Laetitia</au><au>Gaiffe, Olivier</au><au>Chatellier, Jules</au><au>Soumann, Valérie</au><au>Cote, Jean-Marc</au><au>Salut, Roland</au><au>Khelif, Abdelkrim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves</atitle><jtitle>Physical review applied</jtitle><date>2021-11-01</date><risdate>2021</risdate><volume>16</volume><issue>5</issue><artnum>054024</artnum><issn>2331-7019</issn><eissn>2331-7019</eissn><abstract>The rising need for hybrid physical platforms has triggered a renewed interest in the development of agile radio-frequency phononic circuits with complex functionalities. The combination of traveling waves with resonant mechanical elements appears as an appealing means of harnessing elastic vibration. In this work, we demonstrate that this combination can be further enriched by the occurrence of traveling surface acoustic waves (SAWs), induced by elastic nonlinearities, interacting with a pair of otherwise linear micron-scale mechanical resonators. Reduction of the resonator-gap distance and an increase in the SAW amplitude results in a frequency softening of the resonator-pair response that lies outside the usual picture of geometrical Duffing nonlinearities. The dynamics of the SAW excitation scheme allows further control of the resonator motion, notably leading to circular-polarization states. These results may pave the way toward versatile high-frequency phononic microelectromechanical-systems–nanoelectromechanical-systems circuits fitting both classical and quantum technologies.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevApplied.16.054024</doi><orcidid>https://orcid.org/0000-0003-3372-7057</orcidid><orcidid>https://orcid.org/0000-0001-9376-2108</orcidid><orcidid>https://orcid.org/0000-0003-3372-705</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2331-7019
ispartof Physical review applied, 2021-11, Vol.16 (5), Article 054024
issn 2331-7019
2331-7019
language eng
recordid cdi_hal_primary_oai_HAL_hal_03549399v1
source American Physical Society Journals
subjects Acoustics
Engineering Sciences
Materials
Micro and nanotechnologies
Microelectronics
Optics
Other
Physics
title Nonlinear Coupling of Phononic Resonators Induced by Surface Acoustic Waves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T12%3A03%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Coupling%20of%20Phononic%20Resonators%20Induced%20by%20Surface%20Acoustic%20Waves&rft.jtitle=Physical%20review%20applied&rft.au=Benchabane,%20Sarah&rft.date=2021-11-01&rft.volume=16&rft.issue=5&rft.artnum=054024&rft.issn=2331-7019&rft.eissn=2331-7019&rft_id=info:doi/10.1103/PhysRevApplied.16.054024&rft_dat=%3Chal_cross%3Eoai_HAL_hal_03549399v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true